An Archaebacterial elf-1A: new grist for the mill

Sir,

The archaebacteria (or Archaea) were shown, by molecular phylogeneticists, to be the closest prokaryotic relatives of the nuclear component of eukaryotic cells (Iwabe et al., 1989, Proc Natl Acad Sci USA 86: 9355–9359). Many aspects of their molecular biology have also been found to support this conclusion, by demonstrating close similarity to the corresponding eukaryotic systems. There are several good examples of this, including the proteasome, small subunit ribosomal RNA processing, and, most convincingly, the transcription complex (Pühler et al., 1994, Syst App Microbiol 16: 734–741; Duravic and Dennis, 1994, Mol Microbiol 13: 229–242; reviewed in Keeling et al., 1994, Curr Op Genet Dev 4: 816–822).

In other characteristics, the archaebacteria bear a closer resemblance to their eubacterial cousins: genome and gene structure are shared, as well as many features of the translational process. It is well known, for instance, that archaebacterial mRNAs are often polycistronic, uncapped and do not include a long poly-A tail as do eukaryotic transcripts. Moreover, ribosome binding to mRNA is thought to be effected by a Shine–Dalgarno-like interaction between the 16S ribosomal RNA and mRNA (Brown and Daniels, 1989, CRC Crit Rev Microbiol 16: 287–335) — all features which suggest that archaebacterial translational initiation is possibly similar to that in eubacteria and unlike that in eukaryotes.

However, what little direct evidence there is bearing on the nature of the archaebacterial translation-initiation complex is somewhat contradictory. The single putative initiation factor recently sequenced from animals, plants (Dever et al., 1992, Mol Biol 215: 342–350), and fungi (GenBank accession number U11585). The physical characteristics, and similarity between the archaebacterial initiation factor that has been identified in the archaebacteria is actually homologous to the eukaryotic initiation factor elf-5A (Bartig et al., 1992, Eur J Biochem 204: 751–758), for which no eubacterial equivalent is known. Moreover, the role of elf-5A in eukaryotic translation initiation has recently been seriously questioned (Kang and Hershey, 1994, J Biol Chem 269: 3934–3940), and no functional analysis has been performed on the archaebacterial homologue. Nevertheless, the possibility that archaebacterial translation involves both eukaryotic and eubacterial elements is a tempting speculation, and has prompted a search for other, as yet unidentified, archaebacterial translation-initiation proteins.

Using the blastp search strategy (Altschul et al., 1990, J Mol Biol 215: 403–410) we compared a representative sequence of each eubacterial and eukaryotic initiation factor, for which a sequence is available, to the existing sequence database. From this search, two archaebacterial reading frames were unambiguously identified: the aforementioned Sulfobolus acidocaldarious elf-5A homologue, and a previously unidentified open reading frame (ORF), ORF125 (Fig. 1), located downstream of the Thermoplasma acidophilum RNA polymerase operon (Klenk et al., 1992, Nucl Acids Res 20: 5226). The inferred polypeptide sequence of ORF125 is approximately 30% identical and 50% similar over the aligned region to elf-1A (also called elf-4C), which is a highly conserved initiation factor recently sequenced from animals, plants (Dever et al., 1994, J Biol Chem 269: 3212–3218), and fungi (GenBank accession number U11585). The physical nature of the Thermoplasma elf-1A is somewhat different to that of its eukaryotic counterparts, which have a dipole nature characterized by an acidic C-terminal tail, and a highly basic N-terminus. The archaebacterial sequence neither has any of these features, and it is actually missing the 22–31 amino acids corresponding to the C-terminal tail.

Fig. 1. Multiple alignment of elf-1A and Thermoplasma ORF125. Amino acid identity and similarity between the Thermoplasma sequence and the consensus of eukaryotic sequences are specified by dots and colons, respectively. The similarity extends the entire length of the polypeptide except that the archaebacterial elf-1A lacks the acidic C-terminal tail.
tail; while these dissimilarities may be of some significance to the function of the protein in vivo, the divergence time between the sequences and the thermoacidophilic nature of Thermoplasma may also account for some differences in its properties.

In eukaryotes, eIF-1A is thought to drive the dissociation of the 80S ribosome by holding the 40S subunit in its monomeric form, and in doing so increases the efficiency of the interaction between the 40S subunit, the mRNA and the ternary complex (Thomas et al., 1980, Eur J Biochem 107: 39–45). This role is a general requirement of translation initiation, and is fulfilled in eubacteria by a non-homologous factor, IF-1. If this Thermoplasma homologue of eIF-1A does play a role in translation initiation (in which case we suggest calling it aIF-1A), its presence in the archaeabacteria raises the interesting possibility that the initiation complex may be more like that of eukaryotes despite the apparent similarities to that of eubacteria.

Unfortunately, there is insufficient information at present to even guess what factors are important in archaeabacterial translation initiation. Hopefully, when more is known, it will hold as many interesting surprises as other, better studied, archaeabacterial molecular processes.

Patrick J. Keeling* and W. Ford Doolittle
Canadian Institute for Advanced Research, Department of Biochemistry, Dalhousie University, Halifax, Nova Scotia, Canada, B3H 4H7.

*For correspondence. E-mail PKEELING@AC.DAL.CA; Tel. (902) 494 3569; Fax (902) 494 1355.

Received 2 March, 1995; revised 15 March, 1995; accepted 31 March, 1995.

© 1995 Blackwell Science Ltd, Molecular Microbiology, 17, 399–400