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Mitochondria originate from an alphaproteobacteria-like 
endosymbiont1, often contain their own genomes, and 
make ATP via oxidative phosphorylation. Most of the 

900–1,100 different mitochondrial proteins are encoded by nuclear 
DNA2. The genome of the progenitor endosymbiont encoded many 
more genes than extant mitochondrial genomes, many of which 
have been lost or transferred to the nucleus3. Mitochondria-encoded 
genes vary, but they include those essential for mitochondrial tran-
scription and translation and the electron transport chain (ETC)4. 
Understanding the dynamics of mitochondrial gene loss and gene 
transfer to the nucleus is, however, limited by poor sampling from 
diverse lineages, especially heterotrophic flagellates5.

Microbial eukaryotes, including heterotrophic flagellates, are 
important constituents of trophic networks and global biogeo-
chemical cycles5, but most remain uncultured. In the absence of 
cultures, researchers have used single-cell or targeted metage-
nome approaches to acquire genomic samples. Three studies have 
analysed partial nuclear or plastid genomes from photosynthetic 
marine cells6,7, and considerable information exists for cultured 
phytoplankton8. Recent studies have tried to fill gaps, relying on 
hand-picking cells of interest9,10 or fluorescence-activated cell sort-
ing (FACS). Among the studies using FACS, a few have attempted 
genome sequencing and assembly11–15, while others have analysed 
small subunit ribosomal RNA genes from PCR amplicons16,17. These 

FACS-based studies have used LysoTracker to stain acidic compart-
ments such as food vacuoles18, or the permissive DNA stain SYBR 
Green, in preserved cells15,17, combined with chlorophyll exclu-
sion to enrich for putatively phagotrophic cells. Where genome 
sequencing has been attempted, it has provided insight into the 
genome sequences of a few eukaryotes; however, the highly frag-
mented incomplete nature of single amplified genomes (SAGs) has 
restricted their use for comparative genomics.

Here, we hypothesize that mitochondrial DNAs (mtDNAs) will 
be sampled in SAGs at a tractable frequency, enabling compara-
tive analysis. We developed a cell-sorting pipeline to select for the 
presence of tubulin, combined with chlorophyll exclusion to target 
heterotrophic flagellates for single-cell isolation. Using these sam-
ples, we performed whole-genome amplification and sequencing, 
recovering numerous and diverse mtDNAs. Using these data, we 
investigated evolution of mitochondrial gene content, confirming a 
dynamic pattern of gene loss and patterns of genetic code variation 
and intron acquisition.

Results
Single-cell sampling of marine flagellates. Heterotrophic protists 
have diverse lifestyles, which are important for ecosystem function. 
Since heterotrophs are poorly sampled, diverse methods are needed 
to recover the diverse forms. Many feed by phagotrophy, using 
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acidic vacuoles to digest engulfed prey. Previous studies have used 
FACS combined with LysoTracker, which stains acidic vacuoles, 
to target actively feeding cells for genomic investigation. However, 
many heterotrophic flagellates (for example, obligate osmotrophs19) 
do not phagocytose; furthermore, acidic vacuoles can be deployed 
for other cellular processes20,21. Therefore, such approaches can yield 
false positives22. To develop alternative ways of recovering hetero-
trophic flagellates while limiting the recovery of false positives (for 
example, prokaryotic cells and detrital particles), we developed an 
approach combining flow cytometry with tubulin-specific fluores-
cence staining, following the logic that many protists, especially in 
the marine water column, use their flagella to find food, hunt prey 
and, in some cases, infect hosts.

We sorted small tubulin-positive photopigment-lacking cells 
from the subsurface chlorophyll maximum (SCM, at a depth of 
30 m) from the eastern North Pacific Ocean, isolated DNA and 
performed multiple displacement amplification (MDA)23. V9 PCR 
combined with Sanger sequencing identified 206 SAGs containing 
eukaryotic nuclear small subunit (nSSU) rRNA genes. Our strat-
egy did not include subcloning of the SSU rDNA amplified tem-
plate. The Sanger chromatographs did not show evidence of mixed 
amplicons, suggesting that the recovered V9 sequences were the 
predominant rDNA signal from each SAG. These were mapped  
to a universal eukaryotic reference tree, revealing a diversity of 

nSSU sequences that cluster with heterotrophic flagellates (Figs. 1  
and 2). Of these, 189 (92%) branched closely to marine hetero-
trophic flagellates, demonstrating the efficacy of our approach  
(Figs. 1 and 2 and Supplementary Table 1). Six nSSU sequences 
grouped with taxa containing photosynthetic or heterotrophic 
forms (for example, haptophytes and ochrophytes), and 11 were 
derived from non-flagellated fungi previously sampled from marine 
environments24 (Fig. 2).

A recent TARA Oceans-related project presented a broad diver-
sity of heterotrophic nSSUs from sorted cryopreserved SAGs using 
SYBR green and chlorophyll exclusion, but enriched for different 
taxa compared with our analysis17. The majority of the heterotro-
phic flagellates recovered were marine stramenopiles (MASTs) (362, 
71%), whereas our protocol recovered some MASTs (12, 6%), but we 
predominantly recovered cercozoans (53, 26%), marine alveolates  
(MALVs) and dinoflagellates (51, 25%), choanoflagellates (22, 11%),  
telonemids (13, 6%) and euglenozoans (20, 10%). Although the 
samples were obtained from different geographic sites, the differ-
ences in taxon diversity recovered highlights the importance of 
developing approaches that target different cellular attributes.

A rank abundance analysis on nSSU V9 diversity tag sequences 
was performed using DNA isolated from parallel seawater samples 
from the same depth and 10 m above. We searched these commu-
nity profiles for representation of the 206 SAGs and found that our 
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Fig. 1 | V9-nSSU phylogenetic mapping of Monterey Bay SAGs. Maximum-likelihood phylogenetic tree of reference nSSU sequences, retrieved and 
curated from the PR2 reference database onto which SAG nSSU V9 sequences (from 206 single cells from eastern North Pacific waters sorted by 
flagellum-targeted flow cytometry) were phylogenetically mapped (red circles). The maximum-likelihood tree was inferred under the GTR-CAT model,  
on the basis of multiple sequence alignment of 20,939 PR2 representative sequences, at a total of 1,750 sites. Major eukaryotic clades are labelled  
(See Fig. 2). Groups with representative SAGs are shaded in blue. Numbers in brackets next to taxon names indicate the number of SAGs that were 
obtained from each taxonomic group.
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SAGs were among the rarer taxa identified (Extended Data Fig. 1 
and Supplementary Table 2). This was expected as the vast major-
ity of eukaryotes at the SCM are photosynthetic. These data also 

indicate that many abundant heterotrophs were not recovered in 
our cell sampling. This could be a product of bias arising from size 
exclusion or due to the limitation of sampling hundreds of cells from 
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which numerous SAGs were recovered are shown. The SAG nSSU V9 sequences mapped to full-length reference tree that incorporates PR2 reference 
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a community of millions. However, based on the taxonomic diver-
sity recovered, we conclude that our sorting method was effective in 
targeting heterotrophic flagellates, while excluding phototrophs and 
non-target cells or particles, and can be applied to various environ-
ments (for example, freshwater and potentially, with modification, 
in soils).

Genome sequencing of single-cell samples. On the basis of the 
phylogenetic affiliation of the 206 SAGs, we chose 99 cells from 
under-sampled lineages for DNA sequencing (Fig. 2). We generated 
204 Gbp of sequence with a mean (median) sequencing depth of 
approximately 1.61 (1.35) Gbp per SAG. The resulting reads were 
assembled, generating a mean assembly size of 14.5 ± 13.8 Mbp 
(mean ± s.d.) and N50 of 3.4 ± 2.4 kbp per SAG. Full-length nSSU 
rRNAs recovered from these assemblies were used to confirm the 
V9 phylogenetic position of the SAGs sampled by BLAST25 dis-
cussed above. In all cases only a single full-length eukaryotic SSU 
type was recovered from each SAG, suggesting that there was 
minimal co-sampling of multiple eukaryotic cells. After database 
curation, three of the nSSU V9 types previously mapped to a tree 
were determined to be artefactual. Specifically, nSSU V9 sequences 
recovered from As1 and As2, which mapped as ascomycete fungi 
(probably due to long-branch attraction), were actually shown to 
represent a picozoan and a rhizarian, respectively. Furthermore, the 
T8-SAG assembly contained a complete telonemid SSU; thus, the 
V9 amplicon sequence was judged to have mapped erroneously as a 
dinoflagellate (Supplementary Table 3).

To estimate genome completion, we implemented the core 
eukaryotic genes mapping approach (CEGMA)13,14, demonstrating 
recovery of 0.81–48% of CEGMA genes (mean 11.4%, median 6.5%) 
(Supplementary Tables 3 and 4), comparable to 2–45% recovery 
seen in other studies11,13,14. However, this approach to estimation of 
genome completion is subject to a range of artefacts stemming from: 
(1) sampling wells occupied by more than one cell and (2) underes-
timated completeness due to biases in the CEGMA reference taxa. 
In some cases, we know that our assemblies are derived from a mix-
ture of eukaryotic, prokaryotic and viral signatures (Supplementary 
Data 1 https://doi.org/10.6084/m9.figshare.8859014); however, the 
lack of multiple SSUs in individual SAGs suggests that eukaryote–
eukaryote contamination was minimal.

Biased recovery of mtDNAs from SAGs. Mitochondrial genome 
contigs were recovered in 70 of 99 SAGs (Supplementary Table 4). 
In the 53 SAGs that demonstrate more than 50% predicted mito-
chondrial completion, the relative coverage of mtDNAs was higher 
and more variable (17.0 ± 17.2 times (mean ± s.d.)) than the SAG 
assemblies (4.9 ± 2.5 times) (Supplementary Table 5), consistent 
with their derivation from organellar genomes that are often present 
in higher copy numbers than nuclear genomes. Notably, we observe 
three distinct groups of SAGs (Fig. 3), those with high nuclear 
CEGMA completion, those with high mitochondrial coverage, 
and those with both low and intermediate nuclear completion and 
mitochondrial coverage (Hotelling’s T2 test26, P = 9.07 × 10−13), but 
no SAGs with high recovery of both nuclear DNA and mtDNA (Fig. 
3). The mutually exclusive recovery of mtDNAs or higher CEGMA 
score could be due to several factors: mtDNA could be abundant in 
some cells, mtDNAs could be preferentially amplified by the SAG 
methodology (as a product of biased MDA of circular or AT-rich 
genomes) or alternatively, nuclear DNA sampling and amplification 
may be retarded relative to mtDNAs due to chromatin wrapping 
or the complex secondary structures of nuclear DNA. Regardless 
of the explanation, our data demonstrate that when mitochondrial 
DNA is preferentially recovered from SAG genomes, nuclear gene 
sampling is limited. The differences between mitochondrial and 
nuclear genome coverage, the lack of intervening stop codons in 
open reading frames and the absence of bordering nuclear sequence 

in mitochondrial contigs all suggest that we have sequenced bona 
fide mitochondrial genomes and not mitochondrial insertions into 
nuclear genomes.

A total of ten unique, complete circular-mapping mtDNAs were 
assembled from individual SAGs. These include: two telonemids 
(T1, (GenBank accession no.) MK188946 and T12, MN082145), 
a katablepharid (K4, MK188945), an unknown alveolate (As1, 
MK188935 (see below)), two MAST3s (S11, MK188941 and S18, 
MK188943), a MAST1 (S17, MK188942), a haptophyte (H2, 
MK188944) and two choanoflagellates (C14, MK188937 and C15, 
MK188938) (Fig. 4). Two cercozoan mtDNAs were assembled, 
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judged to be linear and are probably complete, on the basis of pro-
tein repertoires (R17, MK188936 and R32 MN082144 (Fig. 4)). 
A further nine unique near-complete (~ 75–95% complete, see 
Methods) mtDNAs were identified but could not be completed by 
additional assembly approaches or by PCR. In some cases, these 
incomplete mtDNAs provide additional samples validating the 
provenance of the mitochondrial sampling (Fig. 4). From publicly 
available datasets14,27, we assembled three additional complete mtD-
NAs: Incisomonas marina (MAST3), a MAST4a and a MAST4e 
(Fig. 4, asterisks). Additionally, we identified a probably complete 
MAST4a mtDNA (EU795181.1), which was wrongly annotated as 
a bacterial fosmid in the NCBI database. A near-complete mtDNA 
from a MAST4d SAG13 was also assembled (Fig. 5). In total, this 
effort provided 26 complete or near-complete unique mtDNAs 
from poorly sampled eukaryotic lineages.

To confirm that the mtDNAs belong to the expected taxa, we 
used our complete and near-complete mitochondrial assem-
blies as BLAST queries in the NCBI non-redundant database 
(Supplementary Table 6). The choanoflagellate (C14 and C15), 
katablepharid (K4) and haptophyte (H2) mtDNAs matched related 
mtDNAs (Supplementary Table 6). Surprisingly, the top hits for 

As1 were all alveolate dinoflagellates, indicating conflict between 
the mitochondrial and nuclear signal (see below). All mtDNAs 
from stramenopiles (S2, S4, S6, S11, S14, S16 and S18) except S17 
retrieved other stramenopiles as best hits. Since the S17 mtDNA did 
not retrieve sequenced stramenopiles, the Cox1 protein sequence 
was extracted and used as a BLAST query; this retrieved only  
stramenopile sequences (Supplementary Table 6). Unexpectedly, 
the cercozoan mtDNAs and translated Cox1 sequences retrieved 
stramenopiles and other eukaryotes as top hits, but not sequenced 
cercozoans (Supplementary Table 6). We therefore reconstructed 
a multigene phylogeny using stramenopile and cercozoan  
mtDNAs (Fig. 6). Our cercozoans bifurcated with Bigelowiella  
and Paracercomonas and not stramenopiles with full support, con-
firming their probable identity as rhizarians. These results lead us 
to conclude that all assembled mtDNAs with the exception of As1 
have the same taxonomic affiliation as the nSSUs present in each 
respective sample.

The As1 SAG contained a single assembled nSSU sequence 
94% identical to the nSSU from picozoan MS5584–11 (ref. 11) and 
a single circular mtDNA. The mtDNA encodes no transfer RNAs 
(tRNAs) and only five putative genes, including barely identifiable, 
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Fig. 4 | Uncharacterized mtDNAs from underrepresented eukaryotic groups. Complete and near-complete mtDNAs assembled from heterotrophic marine  
flagellate SAGs. Mitochondrial contigs were annotated using mfannot with manual corrections as needed (http://megasun.bch.umontreal.ca/RNAweasel/). 
MtDNAs are represented as circular diagrams or broken circles if contigs could not be joined. Complete genomes assembled herein using publicly available  
metagenomes and previously published SAG datasets are marked with an asterisk in the centre of the genome map. Genomes from Cryothecomonas-like 
cells did not map as circular. Where present, coloured central circles correspond to syntenic regions shared between closely related genomes (within 
boxes). Some mtDNAs were inferred from multiple cells with identical nSSU sequences containing nearly identical stretches of mtDNA sequences that 
could be stitched together (see Methods). Colour-coded genes: blue, protein coding; purple, rRNA; red, tRNA; dark grey, putative introns.
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fragmented, mitochondrial small and large ribosomal RNA genes, 
cob, cox1 and an unidentified open reading frame that—on the 
basis of the predicted transmembrane architecture of the protein—
is probably a divergent cox3 (ref. 28) (Fig. 4). This repertoire is the 
same as that found in myzozoan alveolates, which differs consid-
erably from picozoan MS5584–11 mtDNA11,29. Consistent with the 
BLAST results reported above, phylogenetic reconstruction using 
Cox1 demonstrated that the As1-derived protein branches within 
myzozoans (Extended Data Fig. 2). By contrast, the MS5584–11 
Cox1 protein did not branch strongly within any eukaryotic group, 
as expected for orphan lineages. Given the phylogenetic position of 
Cox1 and the myzozoan-like coding content and ribosomal frag-
mentation, we conclude that the mtDNA assembled from As1 is 
derived from a myzozoan and not a picozoan, a result potentially 
arising from sampling a cryptic cell–cell interaction (predator–prey 
or host–parasite).

Evolutionary diversity of mitochondrial gene repertoires. The 
data reported here enabled us to sample a wide diversity of eukary-
otic lineages and compare repertoires of mitochondrial genes (Figs. 
4 and 5). Several gene families thought to be encoded in a small 
subset of eukaryotic mtDNAs were shown to be discontinuously 
distributed across a diversity of lineages (Fig. 5, red squares). For 
example, the telonemids possess 40 mitochondrial genes, includ-
ing rps1, rpl10, rpl18 (Extended Data Fig. 3), rpl31, rpl32 and tatC, 
which are thought to be rare; whereas the katablepharids contain 
a single discontinuously distributed gene (nad8). Within the kat-
ablepharid mtDNAs, we also identified thirteen additional open 
reading frames with no similarity to ancestral mitochondrial pro-
teins (Fig. 4). Some of these genes are similar to LAGLIDADG and 
GIY–YIG homing endonucleases; others may represent undescribed 
selfish elements or mitochondrial proteins with lineage-specific 
functions requiring further investigation. MAST mtDNAs encode 
additional discontinuously distributed gene families, including tatA 
and tatC in MAST1c, MAST3g, I. marina, MAST4 and MAST8; 
however, they are absent in other closely related lineages (MAST3i 
and MAST3e). Previous studies have noted the presence of tatC 
in labyrinthulomycete mtDNAs (KU183024.1 and AF288091.2 
(refs. 30,31)), which is absent in our thraustochytrid-related cells  

(S2 MK188939 and S4 MK188940). We also identified the RNA 
component (rnpB) of RNase P, encoded by MAST3e and MAST4e; 
rps1, encoded by MAST1c; and rpl31, encoded by MAST1c, MAST4 
and MAST8. The variable nature of stramenopile mtDNA reper-
toires reveals unexpected dynamics of gene loss and endosymbiotic 
transfer within this lineage.

Introns in diverse protist mtDNAs. In addition to the standard 
bacterial-derived mitochondrial gene repertoire, mtDNAs spo-
radically contain group I and group II self-splicing introns32. Using 
mfannot (http://megasun.bch.umontreal.ca/cgi- bin/mfannot/
mfannotInterface.pl), we identified introns in cercozoan, cho-
anoflagellate and katablepharid mtDNAs (Fig. 4, dark grey lines). 
Interestingly, the two recovered choanoflagellate mtDNAs have 97% 
identity, but contain different numbers of introns in the cox1 gene 
(C14, 4; C15, 2; Monosiga brevicollis, 3) (Fig. 4). The two homing 
endonucleases encoded in C15 are similar to two found in C14 (89% 
and 98% amino acid identity), but none are similar to M. brevicollis 
cox1 (AF538053.1), suggesting a complex pattern of replacement or 
rapid intron diversification33.

Similarly, in the cercozoan mtDNAs, whereas no introns can be 
detected in the R1 and R2 mtDNAs, the cercozoan mtDNAs M9, 
As2, R32 and R16/17 contain 23, 8, 9 and 8 introns, respectively. 
Even among mtDNAs from closely related cercozoans (for example, 
R17 and R32, with 97% nSSU rRNA nucleotide identity (Fig. 4)),  
the differences between the number of introns and their positions 
(for example, R32 has four large introns in cox1, whereas R17 has 
no introns in cox1) suggests that most of the introns have been 
acquired recently or that the sampled genomes have undergone 
repeated invasion by related introns coupled with differential loss of 
intron variants (for example, in ref. 33).

Whereas the Palpitomonas bilix and some cryptophyte mtD-
NAs contain no, or very few introns34–36, the katablepharid K4 
mtDNA contains seven introns (Fig. 4, dark grey). The published 
Leucocryptos marina partial mtDNA sequence contains group I 
introns encoding homing endonucleases in the cob and cox1 genes 
in identical locations to introns identified in the katablepharid 
mtDNAs sampled here (49% and 73% amino acid identity, respec-
tively). Our data confirm that multiple mitochondrial evolutionary 
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lineages undergo a high turnover of self-splicing introns, whereas 
other lineages appear to be free from intron colonisation.

Stramenopile mitochondrial phylogeny identifies organelle-to-
nucleus transfers and variations in the mitochondrial genetic 
code. Using our MAST mtDNAs and sampling from public data-
bases, we sought to calculate a stramenopile mtDNA phylogeny. 
Using sixteen conserved ETC proteins, we reconstructed a 4,442-site 
concatenated protein phylogeny using members of cercozoans as an 
outgroup (Fig. 6). The recovered phylogeny previously established 
phylogenetic groups including Ochrophyta, Labyrinthulomycota 
and Pseudofungi27,37. Similar to other mitochondrial phylogenies38, 
and in contrast to phylogenies based on nuclear proteins, we could 
not recover Ochrophyta–Pseudofungi sisterhood27,39, suggesting 
that there is either a conflicting phylogenetic signal in mtDNA 
compared with nuclear markers, or that a systematic phylogenetic 

artefact is present, as discussed previously38. Our phylogeny pro-
vided some support for the placement of MAST clades previously 
proposed from nSSU rRNA phylogenies40 and partially corrobo-
rated in a recent multi-gene phylogeny of nuclear-encoded genes27. 
These relationships include an opalozoan group that includes 
diverse MAST3s (although Cafeteria roebergensis and MAST12 fall 
outside this group) and a sagenistan group containing MAST4s, 
MAST8, MAST1c (unexpectedly) and labyrinthulomycetes  
(Fig. 6). Given previous evidence of contradictory relationships 
identified in stramenopile mitochondrial and nuclear gene phylog-
enies38, the branching order presented here should be treated with 
caution. Additional sampling of stramenopile lineages is required 
to understand the conflict observed between mitochondrial and 
nuclear phylogenies.

Using the mitochondrial phylogeny, we sought to polarize  
mitochondrial traits onto the stramenopile tree. So far, recent and 
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Fig. 6 | Phylogenetic reconstruction of representative stramenopiles using concatenated conserved mitochondria-encoded electron transport chain 
proteins. Electron transport chain proteins encoded in publicly available mtDNAs and our newly sequenced mtDNAs of stramenopiles and rhizarians 
were collected, aligned, masked and concatenated, resulting in a 16-protein 4,442-site alignment. We excluded alveolate mtDNAs from this analysis 
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are mapped to nodes as indicated. Genes encoding electron transport chain components (atp1, nad7, nad9 and nad11) that have putatively moved to the 
nucleus are mapped to nodes as indicated. The atp1 gene has been lost within the opalozoans and is indicated with a strikethrough. N-nad11 indicates that 
the N-terminal domain of nad11 is encoded in the nucleus, while C-nad11 indicates the C-terminal domain of nad11 is encoded in the nucleus. Percentages 
indicate the estimated completeness of each mtDNA presented in this study. ‘TGA = W’ indicates recoding of TGA from a stop codon to tryptophan; 
‘TTA = *’ indicates TTA is used as a stop codon; ‘TAA/G = Y’ indicates TAX codons have been recoded to tyrosine.

Nature Microbiology | VOL 5 | January 2020 | 154–165 | www.nature.com/naturemicrobiology160

http://www.nature.com/naturemicrobiology


ArticlesNaturE MiCrObiOlOgy

frequent functional mitochondria-to-nuclear gene transfers have 
been reported only in Archaeplastida41 (in particular, green plants). 
Identification of closely related lineages containing different mito-
chondrial genes (that is, MAST4s, MAST1 and MAST8) suggests 
that genes have been transferred relatively recently to the nucleus 
in stramenopile lineages. Indeed, there are numerous transfers 
of atp1 and also partial transfers of nad11 in multiple strameno-
pile lineages (Fig. 6 and refs. 39,42). The mtDNA of MAST1c lacks 
nad7 and MAST12 encodes only the N-terminal half of nad11, 
whereas MAST4s lack nad7, nad9 and nad11, which are encoded 
in mtDNAs of most other stramenopiles. We therefore searched for 
nuclear-encoded versions of these genes in the MAST1c, MAST12 
and MAST4 assemblies14. In MAST1c, we identified a short con-
tig encoding the C-terminal region of nad7 adjacent to sequence 
with no similarity to known proteins or genomic DNA. In MAST12, 
we identified a contig with a C-terminal domain of nad11, which 
appears to contain spliceosomal introns. Finally, we also identified  
a contig in a MAST4 assembly encoding nad9 adjacent to the U4/U6  
small nuclear ribonucleoprotein Prp4 along with a number of 
unidentified proteins (complex I contigs: https://doi.org/10.6084/
m9.figshare.7314692). These results suggest that these essential 
genes have been relocated to the nucleus in these lineages.

Our results demonstrate that stramenopile mtDNA repertoires 
are extremely diverse compared to other major lineages such as ani-
mals and fungi and more closely resemble the dynamic repertoires 
in the plant lineage41. Interestingly, the patterns of variation identi-
fied (Fig. 5) generally correspond to a complex pattern of losses pre-
viously proposed as ‘predictable’, in which ‘non-core’ components 
of complexes (for example, complex I components nad7–11) are 
more readily transferred to the nucleus than core (defined as ener-
getically central) components (for example, complex I components 
nad1–6)43. These results further support the hypothesis that the evo-
lutionary diversification of the mitochondrial lineage, deep within 
the eukaryotic radiation, was typified by a pattern of early conserva-
tion of a wider gene repertoire, followed by numerous independent 
gene losses29.

Lastly, our stramenopile and cercozoan mtDNA sequences have 
enabled us to trace the evolutionary history of three genetic code 
changes. Several mitochondrial code changes have been docu-
mented44, the most common being the recoding of TGA from a stop 
codon to tryptophan. This simple change has occurred indepen-
dently in several lineages, including holozoans, fungi, haptophytes, 
some diatoms, C. roebergensis, cercozoans, picozoan MS584–11, 
ciliates and some red and green algae (for example, in ref. 4). We 
show that the TGA–tryptophan genetic code change observed in  
C. roebergensis is shared with MAST12 and can be traced to their com-
mon ancestor. Likewise, since all cercozoans—including sequences 
presented here—encode TGA as tryptophan, it is likely that the code 
change occurred very early in this lineage. More notably, we iden-
tified a genetic code present in our thraustochytrid mtDNAs (two 
near-complete (S2 and S4) and three fragmented (S1, S3 and S15)). 
In these mtDNAs, TGA and TTA (which usually encode leucine) 
serve as the only termination codons, and TAG and TAA (usually 
termination codons) encode tyrosine (Extended Data Fig. 4). This 
finding is supported by the identification of a UUA anticodon tRNA 
in the SAG mtDNAs (Extended Data Fig. 5). TTA was recoded as a 
stop codon in Thraustochytrium aureum (AF288091.2)30; therefore, 
we can trace stepwise changes in the mtDNA code in this lineage 
(Fig. 6). These data demonstrate a complex pattern of genetic code 
variation across stramenopile mitochondria.

Discussion
In this study, we demonstrate that mtDNAs are readily recovered 
from heterotrophic flagellates using tubulin-targeted single-cell sort-
ing with chlorophyll exclusion followed by whole-genome ampli-
fication and sequencing. This represents a method for recovering  

mtDNAs from diverse uncultured eukaryotes that can be applied, 
with minor protocol variations, to investigate a range of environ-
ments. Such an approach will enable higher resolution studies of 
protist population structures and effective sampling of multiple 
genes with different rates of sequence variation that are useful for 
phylogenetic analyses. The data reported here have substantially 
increased the available heterotrophic flagellate mtDNA sequences. 
NCBI reports 9,520 complete mtDNAs, 8,685 from animals, 406 
from photosynthetic algae and plants, 334 from fungi, and 50 from 
animal and plant parasites (apicomplexans and oomycetes). Of the 
remaining 44 genomes of heterotrophic protists, only 17 are het-
erotrophic flagellates, spread across the eukaryotic tree of life. Our 
data more than doubles this representation, adding complete or 
near-complete genomes from 5 unrepresented or underrepresented 
groups (Telonemida, Katablepharida, heterotrophic flagellated 
stramenopiles, Rhizaria and Choanozoa). Further investigation in 
diverse environments will expand our sampling of heterotrophic 
protist mtDNAs from across the eukaryotic tree.

Methods
Sample collection and preparation. Seawater was collected in Monterey Bay at 
36.6893° N, 122.384° W (Monterey Bay Aquarium Research Institute time series 
station M2, 56 km from shore) on 7 October 2014 using a Niskin rosette. Water was 
collected at depths of 20 m and 30 m (SCM as determined by in vivo chlorophyll 
fluorescence). For general community diversity analyses, 500 ml of water was 
filtered using a 0.2 µm pore Supor filter (Pall catalogue no. 60301) and extracted 
using a modification of the DNeasy kit (Qiagen) including the addition of a 
mechanical lysis by bead-beating45. For single-cell sorting, the 30 m water sample 
was pre-filtered through a 30 µm mesh, then concentrated by gravity 70–100 times 
onto a 0.8 µm filter and stained with paclitaxel–Oregon Green 488 Conjugate 
(ThermoFisher, 100 µg ml−1 stock made in DMSO) at 10 µM (targeting tubulin  
from the cytoskeleton). Cells were washed twice with sterile artificial seawater 
to remove unbound dye, then stained with Hoechst 33342 (targeting DNA) at 
2 µg ml−1. Stained samples were diluted in sterile artificial seawater in preparation 
for flow cytometry.

Cell sorting of marine heterotrophic flagellates. Cells were analysed and sorted 
on a BD Influx flow cytometer equipped with 488 nm and 355 nm lasers and using 
sterile nuclease-free PBS pH 7.4 as sheath fluid (ThermoFisher catalogue no. 
AM9625). A combination of sort windows was applied to select cells that showed 
green and blue fluorescence (captured by a 520/35 nm and a 460/50 nm bandpass 
filter for Oregon Green (tubulin) and Hoechst 33342 (DNA), respectively) 
compared with unstained control samples, and baseline red fluorescence 
(692/40 nm bandpass filter), indicating the absence of chlorophyll, enabling us to 
exclude the majority of photosynthetic cells (see Extended Data Fig. 6). Eighteen 
SAGs with recovered mitochondrial genomes were obtained using this strategy, 
originating from sort 34 and sort 36 (Supplementary Table 3). A majority of SAGs 
(52) were recovered from sort 35, in which cells were targeted on the basis of 
Oregon Green fluorescence only, regardless of Hoechst fluorescence. However, sort 
windows were refined using the forward-angle light scatter (used as a proxy for cell 
size) to select cells larger than cyanobacterial cells present in the sample (that is, 
Synechococcus, recognizable by the orange fluorescence of the phycoerythrin in the 
cells detected with a 572/27 nm bandpass filter).

Targeted cells were sorted into 96-well plates so that all wells received one 
individual cell (single-cell sorting mode was implemented in BD FACS Sortware 
v.1.0.0.650), except for the outer column of wells, which was left empty for negative 
controls. Duplicate plates were obtained for sort 34 and 36 and triplicate plates 
were obtained for sort 35. The plates were illuminated by UV radiation inside 
the sort chamber for 2 min before the sort, covered with foil and placed at −80 °C 
immediately after the sort. The sort quality and correct drop delay were regularly 
checked by sorting a known number of polystyrene beads (Polysciences, catalogue 
no. 17153–10) on a slide and counting them on an epifluorescence microscope.

Single-cell genome amplification and sequencing. Samples (sorted cells and 
negative controls) were lysed for 10 min at 65 °C using alkaline solution from the 
Repli-g Single Cell Kit (Qiagen) according to the manufacturer’s instructions for 
amplification of genomic DNA from single cells. After neutralization, samples were 
amplified using the Repli-g reagents to obtain a final volume of 50 µl. The MDA 
reactions were run in a thermal cycler for 8 h at 30 °C. All materials used during 
MDA procedures were UV-treated in a HL-2000 HybriLinker UV Crosslinker 
(UVP) for 30 to 90 min. Single-cell MDA products were screened using Sanger 
sequencing of the V9 region of the nuclear small subunit (nSSU) rRNA gene 
amplicons derived from each MDA product. An aliquot of each MDA product 
was diluted 100-fold in water and 2 µl of this dilution served as the template for 
each PCR reaction in 25 µl final volume. PCR amplification was carried out using 

Nature Microbiology | VOL 5 | January 2020 | 154–165 | www.nature.com/naturemicrobiology 161

https://doi.org/10.6084/m9.figshare.7314692
https://doi.org/10.6084/m9.figshare.7314692
http://www.nature.com/naturemicrobiology


Articles NaturE MiCrObiOlOgy

the primers forward 1389F (5′-TTGTACACACCGCCC-3′) and reverse 1510R 
(5′-CCTTCYGCAGGTTCACCTAC-3′) as in ref. 46. PCR products were run on 
1% agarose gels stained with GelGreen. Bands were cut using a Visi-Blue Plate 
(in a UVP transilluminator) to ensure that DNA was not damaged. Amplicons 
were purified with GeneJet gel extraction kit (Thermo Scientific), quantified with 
a Qubit fluorometer using the dsDNA BR kit (Invitrogen) and sent for Sanger 
sequencing (Eurofins).

For Illumina library preparation, an aliquot of each selected MDA sample 
(including six negative controls) was purified with AMPureXP magnetic beads 
(Beckmann) following the manufacturer’s instructions, quantified with a Qubit and 
diluted in 10 mM TrisCl (pH 8.0) to a final volume of 130 µl and a concentration of 
7.7 ng µl−1. DNA was fragmented using focused acoustic waves (Covaris E220) and 
concentrated, and libraries were made with Nextflex Rapid DNA library preparation 
kit and indexes (BIOO Scientific) without PCR amplification. For a subset of 
samples, 3 µl of each was pooled and concentrated for 450–650 bp size selection 
using a Blue Pippin 1.5% agarose cassette with R2 marker. The average size of the 
recovered libraries was 420 bp (with 295 bp inserts). For a second subset, libraries 
were prepared similarly but used bead-based size selection (420–620 bp), rather 
than Blue Pippin, quantified by quantitative PCR and pooled in equimolar amounts 
(213 nM). Library pools were denatured, diluted and 250-paired-end sequenced 
across two lanes on a HiSeq 2500 using Rapid Run SBS v2 reagents (Illumina). Nine 
repeated samples were sequenced more deeply on an additional HiSeq 2500 lane to 
obtain better coverage of these genomes (Supplementary Table 4).

For environmental census of nSSU amplicon libraries, 10 ng environmental 
DNA was amplified in a two-step protocol following the Illumina amplicon 
library preparation strategy. Sequencing primers comprised Illumina Nextera pad 
sequence, a 12-base unique molecular identifier, a spacer sequence and the 1389F 
or 1510R sequences described above. Two cycles of PCR were performed using 
these primers in four 25 µl PCR reactions with 2.5 ng DNA in each. Reactions 
were pooled and purified using AmpureXP beads before adding NexteraXT 
indexes in a second PCR reaction (21 cycles) to complete the library preparations. 
Triplicate samples were prepared, pooled in equimolar amounts and quantified by 
quantitative PCR before 125 bp PE Illumina sequencing.

Single-cell genomic assembly. All SAG sample libraries were assembled using the 
automatic workflow available at https://doi.org/10.5281/zenodo.192677 or https://
github.com/guyleonard/single_cell_workflow. All Illumina read library samples 
were uploaded to an Amazon EC2 instance (m4.10xlarge) of Ubuntu Linux. The 
150 bp PE read libraries were then overlapped using the program PEAR47 (v.0.9.8) 
to create ‘long’ reads; the resulting long reads and the pairs that did not overlap 
were subsequently quality- and adaptor-trimmed using the program Trim Galore! 
(https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/). The resulting 
libraries were then assembled with SPAdes v.3.7.1 (ref. 48) using single-cell mode, 
the careful option and with a combination of k-mers (21, 33 and 55). Quality 
assessment of the resulting scaffolds was computed with the analysis software 
QUAST49 (v.5.0.2) and completeness profiles were made using CEGMA v.2 (ref. 50). 
A set of Blobtools (v.1.0) charts were also made with a combination of scaffolds, 
read mapping and megaBLAST hits to the NCBI nucelotide database51. Additional 
analyses, including KRONA taxonomy charts and Qualimap (v.2.2.1) reports of 
mapping were computed from these data52.

Universal nSSU tree, V9 mapping and taxon identification from rDNA 
assemblies. For the SAG taxonomic classification, nSSU V9 sequences (primers 
1389F–1510R53, a single sequence from each sample) corresponding to each of 
our 206 SAGs were phylogenetically mapped onto an nSSU reference phylogenetic 
tree (see Supplementary Table 1) reconstructed from a processed version of the 
nSSU Protist Ribosomal Reference (PR2) database v.4.454 built from GenBank 
release 203. We first processed the PR2 database by removing short sequences 
(<400 bp) and/or sequences not spanning the V9 region. In addition, sequences 
from metazoan organisms (based on PR2 or GenBank taxonomic data) were also 
discarded. To remove sequence redundancy, the PR2 database was then clustered 
using CD-HIT v.4.6 (ref. 55) at 90% sequence identity for sequences classified 
as Opisthokonta (resulting in 2,694 clusters) and at 98% for non-Opisthokonta 
sequences (18,245 clusters). This final processed PR2 database, used for subsequent 
phylogenetic analysis, was composed of 20,939 nSSU clusters, representing a total 
of 132,235 nSSU sequences.

Cluster representatives, along with SAG V9 sequences, were then aligned 
with PyNAST v.1.2 (ref. 56) using the nSSU seed alignment from Silva release 
v.123 (ref. 57) as a template alignment. The resulting alignment was then edited 
and trimmed using Trimal v.1.4 (ref. 58) to remove sites with gaps in more than 
25% of the sequences, but conserving at least half of the original alignment (that 
is, - gt 0.25 -cons 50 parameters); the final alignment was composed of 1,750 sites. 
Aligned SAG V9 sequences were removed from the alignment and the PR2-based 
maximum-likelihood tree was reconstructed using RAxML v.8.2 (multithreaded 
version; PTHREADS-SSE3)59 under the GTR model with CAT approximation. 
SAG V9 sequences were mapped onto the PR2 reference maximum-likelihood 
tree using the RAxML evolutionary placement algorithm (EPA60) under GTR-
CAT. To evaluate local node supports, a Shimodaira–Hasegawa-like test61 was 
run using FastTree v.2.1 (double precision build62 in ‘accurate’ mode (-mlacc 2 

-slownni parameters)) and under GTR-CAT. Subsequently to the phylogenetic 
mapping, and for tree display purposes, taxa with long branches were pruned from 
the phylogenetic tree; specifically, branches were pruned if the length of the inner 
node’s parent branch was longer than 0.2 substitutions per site or if the terminal 
branch (that is, linking a leaf to a node) was longer than 3 substitutions per site. 
These long branches were identified and removed using the Newick utilities 
package63. Note that no SAG V9 sequences were mapped onto these long branches. 
The figures corresponding to the full, circular PR2 phylogenetic tree with  
SAG V9 mapping (Fig. 1) and clade-specific trees (Fig. 2) were rendered using  
the R package ggtree64.

Contigs from assemblies containing rRNA gene sequences were extracted and 
used as queries in BLAST searches to confirm V9 mapping results (Supplementary 
Table 2). Out of 99 sequenced SAGs, 96 V9 placements corresponded closely with 
the respective assembled nSSU BLAST hits, whereas 3 did not corroborate the 
V9 mapping results, including both sequences that mapped to ascomycetes and 
one sequence that mapped to dinophyte. In these cases, the nSSU assembly data 
clearly indicate that the V9 regions were misplaced during mapping, the first two 
due to long-branch attraction, and the third due to poor V9 sequence quality. 
The negative controls contained predominantly very small fragments of contigs 
most similar to bacterial SSU sequences, possibly due to contamination. However, 
two of the six total negative control samples subjected to sequencing contained 
low-coverage contigs most similar to the nSSU sequence of Cryothecomonas 
aestivalis (97–99% identity). Since these controls were taken from different 96-well 
plates than our samples related to C. aestivalis, it is extremely unlikely that these 
control wells were contaminated either biologically or during library preparation. 
Instead, it is much more likely that the large signal from the 25 SAG samples that 
contained contigs with extremely high coverage (sometimes in the thousands) 
most similar (97–99% identity) to nSSU sequences of C. aestivalis interfered with 
the detector during the sequencing run. The abundance and overrepresentation of 
these sequences in our SAG samples is a plausible source of the apparent technical 
contamination (that is, instrument-derived) of these two negative controls, as well 
as some other samples (see Supplementary Table 1).

Monterey Bay V9 tag sequencing diversity census of whole-seawater samples. 
Primers and other technical sequences were trimmed from demultiplexed paired-
end reads using cutadapt v.1.14 (ref. 65). To identify artefactual sequences, reads were 
searched against a V9 reference database (a V9-trimmed version of PR2, clustered at 
80% sequence identity using CD-HIT) using BLASTn;66 reads with no significant hit 
(E-value < 1 × 10−5) against the reference database were discarded. Reads were then 
processed using DADA2 v.1.4 (ref. 67). On the basis of quality profiles, forward reads 
were truncated at 150 bp, reverse reads were truncated at 100 bp and reads with more 
than two expected errors were filtered out. Forward and reverse reads were then 
independently corrected using run-specific error-rate modelling and dereplicated. 
Amplicon sequence variants (ASVs; that is, unique sequences) were inferred 
from these merged reads. Chimeric ASVs were identified and discarded from the 
datasets. Next, ASVs were assigned a taxonomy using the Ribosomal Database 
Project naïve Bayesian classifier68 as implemented in DADA2 and using PR2 as 
a reference database. ASVs classified as bacteria, archaea, organelle, metazoa or 
with no eukaryotic supergroup classification (that is, classified only as ‘Eukaryota’) 
were discarded. The final Monterey Bay V9 census dataset comprised 1,073 ASVs 
representing a total of 89,376 quality controlled, merged sequences (Supplementary 
Table 6). Comparisons between V9 sequences from Monterey Bay SAGs and 
environmental census, in terms of sequence identity (Supplementary Table 5), were 
conducted using EMBOSS Water pairwise sequence alignment69. Subsequent V9 
analyses were conducted using the R package Phyloseq v.1.20 (ref. 70).

Mitochondrial genome contig identification, reassembly, annotation and 
confirmation. In 70 of 99 (70%) SAG assemblies, contigs encoding multiple 
mitochondrial-like genes were identified from the assembly. To ensure that no 
contaminating DNAs were included in our analysis we removed any contigs 
showing more than 90% identity to known bacterial, chloroplast or contaminating 
(for example, fungal) mitochondrial DNAs. To obtain better mitochondrial 
genome assemblies, reads mapping to each of the identified mitochondrial 
scaffolds for each SAG were extracted (using BWA (v0.7.17)71, SAMtools v.1.9  
(ref. 72) and BAMtools v.2.4.0 (ref. 73)) and reassembled with SPAdes 3.7.1 (ref. 48)  
in assembly-only mode. The best assemblies were chosen for further analysis, 
manual adjustment and annotation. Mitochondrial genes, including introns, were 
annotated using mfannot (http://megasun.bch.umontreal.ca/cgi-bin/mfannot/
mfannotInterface.pl) with manual correction as needed. Myzozoan ribosomal 
fragments in the As1 mitochondrial genome were identified by nhmmer74 searches 
with HMMER v.3.1 using hidden Markov models generated from alignments 
of known fragments75 (E-value < 1 × 10−5). Complete or near-complete contigs 
(see below) were used as queries to identify shorter (that is, encoding only 
single mitochondrial proteins or RNA genes) bona fide mitochondrial contigs 
in assemblies from closely related cells. Mitochondrial genome completion 
percentages were estimated by comparing incomplete mitochondrial genomes 
to complete (100% circular) or near complete genomes (arbitrarily designated at 
95% when no coding sequence or nearly no coding sequence is missing, based on 
comparisons with closely related taxa).

Nature Microbiology | VOL 5 | January 2020 | 154–165 | www.nature.com/naturemicrobiology162

https://doi.org/10.5281/zenodo.192677
https://github.com/guyleonard/single_cell_workflow
https://github.com/guyleonard/single_cell_workflow
https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
http://megasun.bch.umontreal.ca/cgi-bin/mfannot/mfannotInterface.pl
http://megasun.bch.umontreal.ca/cgi-bin/mfannot/mfannotInterface.pl
http://www.nature.com/naturemicrobiology


ArticlesNaturE MiCrObiOlOgy

Samples T1, T12, K4, As1, H2, C14, C15, S11, S17 and S18, as well as I. marina 
and two MAST4 mitochondrial genomes from previous studies were assembled into 
complete circular genomes. T11 could be assembled into a single contig but could 
not be circularized. R32 reassembled into a single linear contig with repeats at 5′ 
and 3′ ends, and was used to identify contigs in similar SAGs. R16 and R17 have 
identical nSSU rRNA and nearly identical mitochondrial sequences (>99.9%) and 
were used to infer a probably complete linear mitochondrial genome molecule with 
repeats at both 5′ and 3′ ends similar to R32. R1 and R2 also have identical SSU and 
nearly identical mitochondrial sequences (>99.5%). Overlapping contigs from R1 
and R2 were joined to form two large contigs that could not be confidently joined 
further. As2 (mapped on V9-SSU rDNA phylogenetic trees near ascomycetes but 
was actually a rhizarian cell) contained a Mataza-like SSU and assembled into seven 
contigs that could not be joined but contained nearly all of the predicted genes 
present in R17 and R32. M6 and M7 mitochondrial genomes were nearly identical 
(>99.6%) and were used to infer a near-complete Mataza mitochondrial genome 
consisting of two non-overlapping contigs. Two SAGs related to thraustochytrids, 
S2 and S4, contained single large mitochondrial genome contigs that could not 
be circularized by PCR. However, on the basis of synteny, the missing stretches of 
DNA could be inferred, since the missing sequences were present in the reciprocal 
SAG (shaded and labelled ‘inferred’ in Fig. 4). S16 (MAST3g) assembled into a 
single contig and appears to be complete in terms of coding content; however, a 
repeat region was assembled in the 3′ region of the contig, which appears to contain 
fragments of cox2, which could indicate the presence of an inverted repeat. We 
could not verify this, as we did not recover any other MAST3g SAGs. Similarly, 
S6 (MAST12) and S14 (MAST8b) were assembled into two and three contigs, 
respectively. S14 appears complete with respect to coding content, although the 
contigs could not be joined. S6 was incomplete, but when compared with the coding 
content of its closest sequenced relative C. roebergensis (which also contains a 
TGA–W code change), it lacked only 7 of 32 genes and therefore was estimated at 
78% complete. Complete and near-compete mitochondrial genomes were visualized 
using the CGview server76 and manually edited for figure construction. Closely 
related mitochondrial genome molecules were manually examined for synteny (Fig. 
4, inner coloured circles within boxed mitochondrial genomes).

Since mitochondrial genomes were well represented in SAG assemblies, we 
calculated the relative coverage of mitochondrial genomes compared with the 
total SAG assembly. We defined relative coverage as the minimum read coverage 
over 80% of the representative genome as defined by BamQC in BAMtools 
output reports (Supplementary Tables 3 and 4). The maximum coverage in the 
output of this tool was 51×. The relationship between relative mitochondrial 
genome coverage was compared with that of the nuclear coverage (as estimated 
by CEGMA%) using the ggplot2 (v.2.2.1)77 and DescTools (v.0.99.23)78 packages 
in R (v.3.4.3)79. A two-sided Hotelling’s T2 test26 (df1 = 2, df2 = 30, T.2 = 44.942, 
P = 9.07 × 10−13) was used to test whether the groupings of SAGs showing high 
mitochondrial coverage (n = 17) and those with high nuclear coverage (n = 16) 
were sampled from populations showing distinct template profiles. This was 
performed under the assumption that they were independently sampled from 
multivariate normal distributions with approximately equal covariance matrices.

Identification of an alternative genetic code in thraustochytrids. The recovered 
thraustochytrid mitochondrial genomes (S1–S4 and S15) use TTA as a stop 
codon and contain in-frame TAG and TAA codons that align with conserved 
tyrosine residues when compared with homologues in other thraustochytrids 
(Extended Data Fig. 4), suggesting that these stop codons have been reassigned 
to code for tyrosine. Cob genes with internal stop codons were identified in 
mitochondrial contigs from each SAG and translated using the standard genetic 
code. These genes were aligned using MUSCLE80 (https://www.ebi.ac.uk/Tools/
msa/muscle/) with publicly available cob genes from thraustochytrid mitochondrial 
genomes (KU183024.1 and AF288091.2) (Extended Data Fig. 4). The lack of a 
tRNA containing the UAA anticodon and the presence of a tRNA with an AAU 
anticodon corroborates this hypothesis (Extended Data Fig. 5). Since T. aureum 
is known to have reassigned TTA to a stop codon (GenBank: AF288091.2), these 
findings support the sister relationship of thraustochytrids and the phylogenetically 
related SAGs sampled here (Fig. 6).

Phylogenetic analysis of representative stramenopiles from concatenated 
mitochondria-encoded ETC proteins. Since mitochondrial ribosomes and 
ribosomal proteins are fast-evolving and have a greater propensity to be lost or 
relocated to the nucleus, we chose to reconstruct a phylogeny of the stramenopiles 
using 16 conserved mitochondria-encoded ETC proteins. These included Nad1–
Nad7, Nad4L, Nad9, Cob, Cox1–Cox3, Atp6, Atp8 and Atp9. After alignment and 
manual trimming using Mesquite v.2.75, this resulted in a concatenated alignment 
with 4,442 sites. IQ-Tree81 was used for model testing, resulting in LG as the 
highest scoring model by BIC. Phylogenetic tree reconstructions were performed 
using MrBayes v.3.2.6 for Bayesian analysis82. MrBayes analyses were run with the 
following parameters: prset aamodelpr = fixed (WAG); mcmcngen = 1,000,000; 
samplefreq = 1000; nchains = 4; startingtree = random; sumt burnin = 250. Split 
frequencies were checked to ensure convergence. Maximum-likelihood bootstrap 
values (100 pseudoreplicates) were obtained using RAxML v.8.2.10 (ref. 83) under 
the LG model84.

Phylogenetic analysis of Cox1 proteins from diverse eukaryotes. Cox1 proteins 
were collected from representative eukaryote groups from the NCBI non-
redundant protein database using BLAST25. Resulting sequences were aligned 
using MUSCLE80, and manually trimmed to a resulting 402 sites. A phylogenetic 
reconstruction was conducted using RAxML v.8.2.10 (ref. 83) (100 bootstrap 
pseudoreplicates) under the LG model84.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Complete mtDNA sequences assembled from this study are available at GenBank 
under the accession numbers MK188935 to MK188947, MN082144 and 
MN082145. Sequencing data are available under NCBI BioProject PRJNA379597. 
Reads have been deposited at NCBI Sequence Read Archive with accession number 
SRP102236. Partial mtDNA contigs and other important contigs mentioned in the 
text are available from Figshare at https://doi.org/10.6084/m9.figshare.7314728. 
Nuclear SAG assemblies are available from Figshare at https://doi.org/10.6084/
m9.figshare.7352966. A protocol is available from protocols.io at: https://doi.
org/10.17504/protocols.io.ywpfxdn.

Code availability
The bioinformatic workflow is available at https://doi.org/10.5281/zenodo.192677; 
additional statistical analysis code is available at https://doi.org/10.6084/
m9.figshare.9884309.
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Extended Data Fig. 1 | Rank abundance curve of amplicon sequence variants (ASVs) from the Monterey Bay nSSU-V9 environmental census. Relative 
abundances correspond to the mean relative abundance of each ASV in samples from two depths (20 m and 30 m) of eastern North Pacific station M2 
(SAGs were recovered from 30 m depth). ASV sequences identical to V9 sequences from SAGs with recovered mitochondrial genomic information are 
represented by red circles; ASVs with no identical sequence match to V9 SAGs with mitochondrial data are represented by grey circles. For each ASV 
identical to a SAG V9, the corresponding SAG codenames are provided (in some cases there are multiple of each type). Samples are coloured according to 
taxonomic affiliation in V9 sorting. Blue, stramenopile; teal, hacrobian; purple, rhizarian; brown, opisthokont. See Supplemenatry Table 7 for details on ASV 
relative abundance.
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Extended Data Fig. 2 | Cox1 protein phylogeny. Cox1 proteins were collected from representative eukaryote groups using BLAST26, aligned using 
MUSCLE81, and manually trimmed to a resulting 402 sites. We reconstructed the phylogeny of Cox1 using RAxML v8.2.1084 (100 bootstrap 
pseudoreplicates) under the LG model85. Maximum likelihood support values are indicated above each branch. The Cox1 from As1 grouped within the 
myzozoan alveolates within a fully supported clade comprising dinoflagellates, apicomplexans, and ‘chromerid’ algae. Picozoan M5584–11 Cox1 does not 
branch strongly with any eukaryotic group. Numbers in brackets indicate number of sequences collapsed.
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Extended Data Fig. 3 | Telonemid mtDNAs encode a putative rpl18 and retain partial synteny with the bacterial-like genomes of jakobids. In all 
telonemid mitochondrial DNAs examined rps8, rpl6, and rpl18 were found in synteny as in mtDNAs of jakobids. Malawimonas jakobiformis is somewhat 
similar as rpl6 and rpl18 are found adjacent to one another. Genbank: Andalucia godoyi NC_021124.1, Histiona aroides NC_021125.1, Jakoba bahamiensis 
NC_021126.1, Jakoba libera NC_021127.1, Reclinomonas americana NC_001823.1, Seculamonas ecuadoriensis NC_021128.1, Malawimonas jakobiformis 
NC_002553.1. Small subunit ribosomal genes are coloured in pink, large subunit ribosomal genes in red, SecY in purple, and electron transport chain 
components in grey.
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Extended Data Fig. 4 | Thraustochytrid mtDNAs harbour a unique genetic code. Alignment of mitochondria-encoded Cob proteins from Thraustochytrium 
aureum, Schizochytrium sp., and four putative thraustochytrid SAGs. Cob genes with internal stop codons were identified in mitochondrial contigs from each 
SAG and translated using the standard genetic code. These proteins were aligned using MUSCLE81 with proteins from publicly available thraustochytrid 
mtDNAs (KU183024.1 and AF288091.2). Positions occupied by TAG or TAA codons are marked with yellow asterisks and aligned most often with tyrosine 
or other hydrophobic residues (marked in orange). Relatively few TAA and TAG codons were conserved between genome sequences suggesting that these 
changes occurred during the recent radiation of this lineage.
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Extended Data Fig. 5 | Distribution of mitochondria-encoded tRNAs. Comparison of mtDNA tRNA coding capacities from: new assemblies from this 
study (bold font), previously sequenced mtDNAs (regular font), and ancestral reconstructions (L-Dia- CA, Last Diaphoretickes Common Ancestor; 
L-Amo-CA, Last Amorphean Common Ancestor - including malawimonads and collodictyonids)); L-Jak-CA, Last Jakobid Common Ancestor; LECA, Last 
Eukaryote Common Ancestor. # symbols indicate incomplete mtDNA. Asterisks indicate genomes assembled from publicly available datasets. Black filled 
square, present; empty square, absent. Red filled squares indicate an independent codon reassignment. In some lineages extra tRNAs are also present 
other than the common tRNAs presented: a, I (uau), one cercozoan lineage (R32) contained a possible suppressor tRNA (gcaa); b, I (uau); c, L (caa);  
d, I (aau); e, L (gag), N (auu).
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Extended Data Fig. 6 | Gating strategy for cell sort 35 from which most SAGs originated. A combination of gates (black polygons) was applied to select. 
a. cells larger than Synechococcus displaying low red fluorescence to exclude photosynthetic eukaryotes and b. cells stained with Oregon Green as 
compared to c. an unstained sample. The green rectangles show the position of 0.75 μm yellow-green beads.
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Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description Single cell heterotrophic flagellates were sorted by flow cytometry. 206 sorted single cells were subjected to whole genome 
amplification. After screening 99 of these were chosen for genome sequencing and analysis.

Research sample 206 single cells sorted from seawater by flow cytometry.

Sampling strategy Seawater was collected in Monterey Bay at 36.6893°N; 122.384°W (Monterey Bay Aquarium Research Institute timeseries station 
M2, 56 km from shore) on 7 October 2014 using a Niskin rosette. Water was collected at 30 m (sub-surface chlorophyll maximum as 
determined by in vivo chlorophyll fluorescence).

Data collection For Illumina library preparation an aliquot of each chosen MDA sample (including 6 negative controls) was purified with AMPureXP 
magnetic beads (Beckmann) following the manufacturer's instructions, quantified with a Qubit and diluted in 10mM TrisCl (pH 8.0) to 
a final volume of 130 uL and a concentration of 7.7 ng/uL. DNA was fragmented using focused acoustic waves (Covaris E220), 
concentrated, and libraries made with Nextflex Rapid DNA library preparation kit and indexes (BIOO Scientific) without PCR 
amplification.  For a subset of samples, 3 uL of each was pooled and concentrated for 450-650 bp size selection using a Blue Pippin 
1.5% agarose cassette with R2 marker. The average size of the recovered libraries was 420 bp (with 295 bp inserts). For a second 
subset, libraries were prepared similarly but used bead-based size selection (420-620 bp), rather than Blue Pippin, quantified by qPCR 
and equimolar pooled at 2 nM. Library pools were denatured, diluted and 250 paired-end sequenced across two lanes on a HiSeq 
2500 using Rapid Run SBS v2 reagents (Illumina). 

Timing and spatial scale 7 October 2014 samples were collected. This was an exploratory study.

Data exclusions No data were excluded from the analysis.

Reproducibility The major hypothesis tested in this project is that mitochondrial genomes are reproducibly recovered from single cell genomic data. 
That we recovered mitochondrial contigs from 70% of our samples suggests that this study is reproducible. Furthermore, we were 
able to recover mitochondrial genomes from previously published single-cell studies confirming that our results are reproducible. 

Randomization This wasn't relevant to our study as it is a single-cell genomics exploratory investigation. No samples to randomize.

Blinding Blinding was not necessary for this study as it is a genomic investigation into unknown diversity.

Did the study involve field work? Yes No

Field work, collection and transport
Field conditions The field conditions on the day are not relevant to our analysis.

Location Seawater was collected in Monterey Bay at 36.6893°N; 122.384°W (Monterey Bay Aquarium Research Institute timeseries 
station M2, 56 km from shore) on 7 October 2014 using a Niskin rosette. Water was collected at 30 m (sub-surface chlorophyll 
maximum as determined by in vivo chlorophyll fluorescence), pre-filtered through a 30 um mesh, then concentrated by gravity 
~70-100 times onto a 0.8 um filter  

Access and import/export No sampling permits were required.

Disturbance No disturbance occurred.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Seawater was collected in Monterey Bay at 36.6893°N; 122.384°W (Monterey Bay Aquarium Research Institute timeseries 
station M2, 56 km from shore) on 7 October 2014 using a Niskin rosette. Water was collected at 30 m (sub-surface chlorophyll 
maximum as determined by in vivo chlorophyll fluorescence), pre-filtered through a 30 um mesh, then concentrated by gravity 
~70-100 times onto a 0.8 um filter and stained with Paclitaxel, Oregon Green® 488 Conjugate (ThermoFisher, 100 ug/mL stock 
made in DMSO) at 10 uM (targeting tubulin from cytoskeleton). Cells were washed twice with sterile artificial sea water to 
remove unbound dye, then stained with Hoechst 33342 (targeting DNA) at 2 ug/ml. Stained samples were diluted into sterile 
artificial sea water in preparation for flow cytometry.

Instrument BD InFlux mounted with 488 and 355 nm lasers. Sheath Fluid: sterile nuclease-free PBS pH 7.4 as sheath fluid (ThermoFisher cat# 
AM9625). 

Software BD FACS(TM) Software v 1.2.0.142 (run software); Verity Software House WinList 9.0 (figure display software)

Cell population abundance There is no population abundance analysis in this manuscript. The sorting was used to separate cells into individual wells that 
were then sequenced (as described in methods) and no quantitative information is discussed or implied. The pre-concentration 
methods used preclude derivation of numerical information.

Gating strategy A combination of sort windows was applied to select the cells that showed green and blue fluorescence (captured by a 
520/35nm and a 460/50nm bandpass filter for Oregon Green [tubulin] and Hoechst 33342 [Blue-DNA], respectively) as 
compared to unstained control samples, and baseline red fluorescence (692/40nm bandpass filter) indicating the absence of 
chlorophyll, allowing exclusion of photosynthetic cells. Eighteen SAGs with recovered mitochondrial genomes were obtained 
following this strategy and originated from sort 34 and sort 36 (Table S2). A majority of SAGs (52) were recovered from sort 35 
where cells were targeted based on Oregon Green fluorescence only and regardless of Hoechst fluorescence, however sort 
windows were refined using the forward angle light scatter (used as a proxy for cell size) to select cells larger than cyanobacterial 
cells present in the sample (i.e., Synechococcus, recognizable by the orange fluorescence of the phycoerythrin present in the 
cells detected in a 572/27 nm bandpass filter).

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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