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e  used  Cytochrome  Oxidase  Subunit  1  (COI)  to  assess  the  phylogenetic  relationships  and  taxonomy
f Nebela  sensu  stricto  and  similar  taxa  (Nebela  group,  Arcellinida)  in  order  to  clarify  the  taxonomic
alidity of  morphological  characters.  The  COI  data  not  only  successfully  separated  all  studied  morphos-
ecies but  also  revealed  the  existence  of  several  potential  cryptic  species.  The  taxonomic  implications
f the  results  are:  (1)  Genus  Nebela  is  paraphyletic  and  will  need  to  be  split  into  at  least  two  mono-
hyletic assemblages  when  taxon  sampling  is  further  expanded.  (2)  Genus  Quadrulella, one  of  the

ew arcellinid  genera  building  its  shell  from  self-secreted  siliceous  elements,  and  the  mixotrophic
yalosphenia papilio  branch  within  the  Nebela  group  in  agreement  with  the  general  morphology  of

heir shell  and  the  presence  of  an  organic  rim  around  the  aperture  (synapomorphy  for  Hyalospheni-
dae). We  thus  synonymise  Hyalospheniidae  and  Nebelidae.  Hyalospheniidae  takes  precedence  and
ow includes  Hyalosphenia,  Quadrulella  (previously  in  the  Lesquereusiidae)  and  all  Nebelidae  with  the
xception of  Argynnia  and  Physochila. Leptochlamys  is  Arcellinida  incertae  sedis.  We  describe  a  new
enus Padaungiella  Lara  et  Todorov  and  a new  species  Nebela  meisterfeldi  n.  sp.  Heger  et  Mitchell
nd revise  the  taxonomic  position  (and  rank)  of  several  taxa.  These  results  show  that  the  traditional
Please  cite  this  article  in  press  as:  Kosakyan  A,  et  al.  COI  Barcoding  of  Nebelid  Testate  Amoebae  (Amoe-
bozoa:  Arcellinida):  Extensive  Cryptic  Diversity  and  Redefinition  of  the  Hyalospheniidae  Schultze.  Protist  (2011),
doi:10.1016/j.protis.2011.10.003

orphology-based taxonomy  underestimates  the  diversity  within  the  Nebela  group,  and  that  phyloge-
etic relationships  are  best  inferred  from  shell  shape  rather  than  from  the  material  used  to  build  the
hell.
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Introduction

Free-living protists  make  up a large  part of the
Earth’s  biodiversity  (Medinger  et al. 2010) and are
of  major ecological  importance  at the global  scale
(Adl  and  Gupta  2006).  The vast majority of this
diversity  is, however,  not yet described  (Piganeau
et  al. 2011)  and existing  descriptions  are  often
imprecise  (Adl et al. 2008; Caron  2009). Yet reliable
taxonomy  is an essential prerequisite  for under-
standing  the ecology,  biogeography, and  evolution
of  any group  of organisms. Unfortunately,  poor  tax-
onomy  is one  of the curses  of the  study of free-living
protists,  leading,  for  instance,  to endless  debates
about  the existence  of biogeographical  patterns in
the  distribution  of free-living  protists (Finlay  et al.
2004;  Foissner  2008; Heger et al. 2009; Mitchell
and  Meisterfeld 2005).

DNA-based studies often show that  traditional
taxonomy  underestimates  diversity  of  both  macro-
scopic  and microscopic  organisms (Harper et  al.
2009;  Hebert et al.  2004a,b).  Due  to a lower  tax-
onomic  effort and the  lack of easily  recognized
morphological  features,  the expectation  is  that  the
amount  of cryptic diversity (i.e.  genetic  diversity that
is  not reflected  in observable  morphological  fea-
tures)  in microscopic  organisms  is very high.

Arcellinid  amoebae are a good model  for  taxon-
omy  and evolutionary  studies of free-living  protists
because  of  their  diversity,  abundance  and taxo-
nomically  diagnostic  shell. The  distinct  ecological
requirements  of testate  amoebae  species,  includ-
ing  both the arcellinids  (Amoebozoa:  Arcellinida)
and  the  euglyphids (Rhizaria: Cercozoa:  Eug-
lyphida),  and the  preservation  of their  shells in
peat  and sediments make  them  good  bioindica-
tors  for  palaeoecological  studies and  environmental
monitoring  (Charman 2001).  In addition,  testate
amoebae  were shown to play important  roles  in the
cycling  of  carbon, nitrogen and  silica in terrestrial
ecosystems  (Aoki et al.  2007; Schröter  et al. 2003;
Wilkinson  2008).  However,  as for  most  protists, data
on  total biodiversity,  geographic  distribution, mor-
phology,  phylogeny  and ecology of this  group  of
organisms  are  still  very incomplete  and  controver-
sial.

Our  focus  here  is on a group  of arcellinid  tes-
tate  amoebae  including  the “core Nebelas”  sensu
Lara  et al. (2008) and most  closely  related  taxa
(i.e.  the clade containing  Apodera  vas  Certes,
1889  and  Nebela lageniformis  Penard,  1890),
hereafter  referred  to as the  “Nebela  group”. This
group  contains  some  of  the  most  remarkable  and
common  species of testate  amoebae,  including
both  easily  identifiable  species,  and  problematic

species-complexes. Members  of this group are
especially  abundant  in mosses  and forest litter, and
more  rarely  in other biotopes  such  as freshwater
pools,  etc. (Meisterfeld  2002;  Todorov  2002). The
classification  of this group  is based  on characters
of  the  test  such  as  composition  (proteinaceous  or
agglutinated),  shape of the aperture  (circular, oval
or  curved)  and  shape of the shell  (mostly flask-
shaped  but  more or less elongated  and in some
cases  with  appendages,  a keel, horns etc.).  The
classification  of the Nebela group  has  changed con-
siderably  over time  (Fig. 1), mainly  depending on
which  morphological  trait has  been  considered as
phylogenetically  most  relevant  at the different  taxo-
nomical  levels.

Molecular  tools now make  it possible  to reassess
the  validity of this taxonomy.  However until now
only  one study has examined  the phylogeny of
the  Nebela  group  based  on molecular methods
(SSU  rRNA), but with very  partial coverage of the
described  morpho-species  (Lara et al. 2008). This
study  showed  that the Nebelidae  sensu  Meisterfeld
(2002)  was paraphyletic  as Argynnia dentistoma
Penard,1890  appeared  only distantly  related to
members  of genus  Nebela Leidy,  1874.  In addi-
tion,  members  of genera  Apodera  Loeblich and
Tappan,  1961, Hyalosphenia  Stein,  1859, Nebela
and  Porosia Jung,  1942, were intermingled in
a  robust  clade informally called  “core  Nebelas”.
However,  the  species delineations  and the  phy-
logenetic  relationship  between  members of the
“core  Nebelas”  remained  unclear,  partly because
of  under-sampling  and  partly because  these close-
related  species  could  hardly  be discriminated on
the  basis of  the less variable SSU  rRNA gene.
We  therefore  investigated the species  delineations
and  the phylogenetic  relationships  within genus
Nebela  and related  taxa based  on mitochon-
drial  cytochrome  oxydase gene subunit 1 (COI)
sequences.  This  marker  is commonly  used  for  DNA
barcoding  in animals  (Hebert  et al.  2003a,b) and
has  been shown  to be  well suited  for delimiting
species  of ciliates, dinoflagellates,  vannellid amoe-
bae  or  euglyphid  testate amoebae  (Barth et al.
2006;  Chantangsi et al. 2007; Heger  et al. 2010; Lin
et  al. 2009; Nassonova et al. 2010). Our data  con-
firm  the usefulness  of COI  sequences  for  taxonomic
studies  of  certain Arcellinida  species. In addition
our  combined  molecular  and morphological results
lead  us to propose  several  nomenclatural changes.

Results

A total of 59  sequences  were  obtained from
24  morphospecies,  most of which  were also

dx.doi.org/10.1016/j.protis.2011.10.003
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Figure  1. Summarised  history  of  classification  of  genus  Nebela  and  related  taxa.

characterized  by scanning  electron  and light
microscopy.  The fragment lengths  ranged  from
308  bp to 668  bp.  Only 6  sequences  were  shorter
than  560 bp (Table 1).  COI separated  efficiently
the  different  morphospecies,  including  closely
related  ones and  our  molecular data suggest

the presence  of cryptic species  within several
morphospecies.

The  results of our phylogenetic  reconstructions
are  shown in Figure  2. Topologies  of  both the strict
consensus  ML  and  Bayesian  trees  were similar.
The  tree  revealed  the existence  of five main clades

dx.doi.org/10.1016/j.protis.2011.10.003
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Table  1. List  of  sequenced  taxa  and  sampling  locations.

Taxa Sampling  location  Country  Co-ordinates  Number  of
cells used  per
extraction

Sequence
length  (bp)

Gen  Bank
number

Alocodera  cockayni
AR

Sphagnum  magellanicum  mosses,
Lapataya National  Park,  Tierra  del
Fuego

Argentina  54◦51′S  68◦34′W  >  1  637  JN849043

A. cockayni  CL-1 Alerce  Costero,  Cordillera  Pelada,
Valdivia

Chile 40◦11′S 73◦28′W 1 617  JN849069

A. cockayni  CL-2 Alerce  Costero,  Cordillera  Pelada,
Valdivia

Chile 40◦11′S  73◦28′W  1  308  JN849068

Certesella martiali
AR

Sphagnum  mosses,  near  Ushuaia,
Tierra del  Fuego

Argentina  54◦47′S  68◦17′W  1  586  JN849064

Hyalosphenia papilio
CA-1

Sphagnum  mosses,  Echo  Bay,  British
Columbia

Canada  50◦45′N  126◦28′W  1  664  JN849016

H. papilio  CA-2  Sphagnum  mosses,  Echo  Bay,  British
Columbia

Canada  50◦45′N  126◦28′W  > 1  664  JN849017

H. papilio  CA-3  Sphagnum  mosses,  Echo  Bay,  British
Columbia

Canada  50◦45′N  126◦28′W  1  664  JN849011

H. papilio  CA-4 Aquatic  mosses,  near  Unnecessry
Mountain,  British  Columbia

Canada  49◦25′N  123◦12′W  >  1  664  JN849012

H. papilio  CA-5  Aquatic  mosses,  near  Unnecessry
Mountain,  British  Columbia

Canada  49◦25′N  123◦12′W  1  664  JN849013

H. papilio  CA-6  Aquatic  mosses,  near  Unnecessry
Mountain,  British  Columbia

Canada  49◦25′N  123◦12′W  >  1  664  JN849014

H. papilio  CA-7  Aquatic  mosses,  near  Unnecessry
Mountain,  British  Columbia

Canada  49◦25′N  123◦12′W  >  1  629  JN849015

H. papilio  PL-1  Bory  Tucholskie,  Poland  Poland  53◦36′N  18◦00′E  1  620  JN849019
H. papilio  PL-2  Bory  Tucholskie,  Poland  Poland  53◦36′N  18◦00′E  1  620  JN849018
Nebela ansata  CA-1  Sphagnum  mosses,  Peggy’s  Cove,

Nova  Scotia
Canada  44◦ 29′N  63◦ 53′W  1  624  JN849055

N. ansata  CA-2  Sphagnum  mosses,  Peggy’s  Cove,
Nova  Scotia

Canada  44◦ 29′N  63◦ 53′W  >  1  629  JN849054

N. bohemica  BG  Sphagnum  mosses,  Vitosha  Bulgaria  42◦36′N  23◦17′E  >  1  636  JN849042
N. carinata  CA-1  Mosses,  Grouse  Mountain,  British

Columbia
Canada  49◦23′N  123◦04′W  1  668  JN849038

N. carinata  CA-2  Mosses,  Grouse  Mountain,  British
Columbia

Canada  49◦23′N  123◦04′W  >  1  638  JN849036

N. carinata  CA-3  Mosses,  Grouse  Mountain,  British
Columbia

Canada  49◦23′N  123◦04′W  >  1  637  JN849037

N. carinata  CA-4  Sphagnum  mosses,  Peggy’s  Cove,
Nova  Scotia

Canada  44◦ 29′N  63◦ 53′W  >  1  667  JN849039

dx.doi.org/10.1016/j.protis.2011.10.003
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N.  carinata  CA-5  Sphagnum  mosses,  Peggy’s  Cove,
Nova  Scotia

Canada  44◦ 29′N 63◦ 53′W  >  1  667  JN849040

N. carinata  CA-6  Aquatic  mosses,  Cape  Breton,  Nova
Scotia

Canada  46◦50′N  60◦24′W  > 1  618  JN849041

N. carinata  CH-1  Sphagnum  mosses,  Praz-Rodet,
Vaud

Switzerland  46◦33′N  06◦10′E  >  1  668  JN849034

N. carinata  CH-2  Sphagnum  mosses,  Praz-Rodet,
Vaud

Switzerland  46◦33′N  06◦10′E  >  1  640  JN849035

N. carinata  SE  Sphagnum  mosses,  bog  pool,
Ryggmossen

Sweden  60◦00′N  17◦15′E  >  1  668  JN849033

N. flabellulum  CA  Mosses,  Lynn  Peak,  British  Columbia  Canada  49◦22′N  123◦01′W  >  1  665  JN849026
N. galeata  CA-1  Sphagnum  mosses,  Echo  Bay,  British

Columbia
Canada  50◦45′N  126◦28′W  1  631  JN849059

N. galeata  CA-2  Sphagnum  mosses,  Echo  Bay,  British
Columbia

Canada  50◦45′N  126◦28′W  1  607  JN849058

N. galeata  CA-3  Sphagnum  mosses,  Echo  Bay,  British
Columbia

Canada  50◦45′N  126◦28′W  1  624  JN849060

N. hippocrepis  CA-1  Aquatic  mosses,  Cape  Breton,  Nova
Scotia

Canada  46◦50′N  60◦24′W  > 1 630  JN849056

N. hippocrepis  CA-2  Aquatic  mosses,  Cape  Breton,  Nova
Scotia

Canada  46◦50′N  60◦24′W  1  629  JN849057

N. marginata  CA-1  Aquatic  mosses,  near  Unnecessary
Mountain,  British  Columbia

Canada  49◦25′N  123◦12′W  1  668  JN849029

N. marginata  CA-2  Aquatic  mosses,  near  Unnecessry
Mountain,  British  Columbia

Canada  49◦25′N  123◦12′W  > 1 668  JN849027

N. marginata  CA-3  Sphagnum  mosses,  Echo  Bay,  British
Columbia

Canada  50◦45′N  126◦28′W  > 1 668  JN849028

N. marginata  CA-4  Aquatic  mosses,  near  Unnecessary
Mountain,  British  Columbia

Canada  49◦25′N  123◦12′W  > 1 631  JN849032

N. marginata  CA-5  Sphagnum  mosses,  Echo  Bay,  British
Columbia

Canada  50◦45′N  126◦28′W  1  668  JN849030

N. marginata  CH  Sphagnum  mosses,  Poor  fen  on  the
west  side  of  Lake  Piora,  Ticino

Switzerland  46◦32′N  08◦42′W  > 1 615  JN849031

N. meisterfeldi  CA-1  Sphagnum  mosses,  Strathcona  Park,
Vancouver  Island,  British  Columbia

Canada  49◦42′N  125◦18′W  > 1 668  JN849053

N. meisterfeldi  CA-2  Mosses,  Grouse  Mountain,  British
Columbia

Canada 49◦23′N  123◦04′E  1  615  JN849052

dx.doi.org/10.1016/j.protis.2011.10.003
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Table  1  (Continued)

Taxa  Sampling  location  Country  Co-ordinates  Number  of
cells used  per
extraction

Sequence
length  (bp)

Gen  Bank
number

N.  penardiana  BG  Sphagnum  mosses,  Vitosha  Mountain  Bulgaria  42◦36′N  23◦17′E  >  1  360  JN849062
N. speciosa  BG-1  Sphagnum  mosses,  Vitosha  Mountain  Bulgaria  42◦36′N  23◦17′E  >  1  509  JN849045
N. speciosa  BG-2 Sphagnum  mosses,  Vitosha  Mountain Bulgaria 42◦36′N 23◦17′E > 1 640 JN849044
N. tincta  CA Aquatic  mosses,  near  Unnecessry

Mountain,  British  Columbia
Canada 49◦25′N 123◦12′W > 1 665  JN849025

N. tincta  var.  galeata
CR

Mosses,  Volcan  Poás Costa  Rica 10◦11′N  84◦13′W  >  1  631  JN849023

N. tincta  var.  major
CA

Sphagnum  mosses,  Pacific  Rim,
British Columbia

Canada  48◦38′N  124◦46′W  1  665  JN849067

N. cf.  tincta  CA  Sphagnum  mosses,  Burns  bog,
British Columbia

Canada  49◦08′N  122◦55′W  >  1  614  JN849024

N. tubulosa  BG-1  Sphagnum  mosses,  Vitosha  Mountain  Bulgaria  42◦36′N  23◦17′E  > 1  623  JN849020
N. tubulosa  BG-2 Sphagnum  mosses,  Vitosha  Mountain  Bulgaria  42◦36′N  23◦17′E  > 1  623  JN849021
N. tubulosa  BG-3  Sphagnum  mosses,  Vitosha  Mountain  Bulgaria  42◦36′N  23◦17′E  > 1  618  JN849061
N. cf.  tubulosa  CA  Sphagnum  mosses,  Cape  Breton,

Nova Scotia
Canada  46◦48′N  60◦49′W  > 1  631  JN849022

Padaungiella
lageniformis BG

Sphagnum  mosses,  Vitosha  Mountain  Bulgaria  42◦36′N  23◦17′E  > 1  568  JN849065

P. nebeloides  FR  Floating  Sphagnum  mire,  Lac  de
Bellefontaine,  Jura

France  46◦34′N  6◦05′W  1  605  JN849063

P. wailesi  CH  Forest  litter,  Bois  du  Jorat,  Vaud  Switzerland  46◦30′N  6◦40′W  1  485  JN849066
Quadrulella

symmetrica BG-1
Sphagnum  mosses,  Vitosha  Mountain  Bulgaria  42◦36′N  23◦17′E  1  634  JN849047

Q. symmetrica  BG-2  Sphagnum  mosses,  Vitosha  Mountain  Bulgaria  42◦36′N  23◦17′E  > 1  625  JN849049
Q. symmetrica  BG-3  Sphagnum  mosses,  Vitosha  Mountain  Bulgaria  42◦36′N  23◦17′E  > 1  340  JN849048
Q. symmetrica  CH  Sphagnum  mosses,  les  Nicolets,

Vaud
Switzerland  46◦21′N  07◦07′W  > 1  633  JN849046

Q. symmetrica  CA  Sphagnum  mosses,  Echo  Bay,  British
Columbia

Canada  50◦45′N  126◦28′W  > 1  607  JN849051

Q. longicollis  BG  Sphagnum  mosses,  Vitosha  Mountain  Bulgaria  42◦36′N  23◦17′E  > 1  640  JN849050
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Figure  2.  Maximum  likelihood  bootstrap  consensus  tree  of  59  Nebela  s.str.  and  related  taxa  testate  amoebae
COI sequences  based  on  677  nucleotide  positions.  The  numbers  along  the  branches  represent  respectively  the
bootstraps obtained  by  maximum  likelihood  method  and  the  posterior  probabilities  as  calculated  with  Bayesian
analyses. Only  values  above  50/0.50  are  shown.  The  tree  was  rooted  with  clade  6  (i.e.  the  group  of  Padaungiella
(Nebela) lageniformis).
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with several  subclades. Further  phylogenetic  analy-
ses  (see Methods) confirmed  the  existence  of these
five  clades  and revealed  that Nebela lageniformis,
N.  nebeloides  (Gauthier-Lièvre  et Thomas,  1958)
Todorov  et al. 2010,  N. wailesii Deflandre,  1936
(which  we transfer  to new genus  Padaungiella, see
section  Taxonomic  Actions)  and Alocodera cock-
ayni  Penard, 1910  sequences  (outgroup  used in the
tree  of the Figure  2) formed an additional  indepen-
dent  clade (clade  6).

Clade 1 comprised  N. carinata  Archer, 1876
and  N. marginata  Penard,  1902,  two  species  pre-
senting  a keel around  the aboral end  of the  test,
and  was  supported  with respectively  97  bootstrap
(B)  and 1.00 posterior  probabilities  (PP)  values.
Whereas  all N. marginata  sequences  were  closely
related  and presented  limited  genetic  variation,
N.  carinata sequences  clustered  into  two groups
which  are  clearly  split and  genetically  relatively
distant  from each other.  Clade 2 (node  support:
B=98;  PP=1.00) includes  the following  species:
Nebela  ansata  Leidy,  1879,  N. hippocrepis  Leidy,
1879,  N.  galeata  Penard,  1890 and  N. penar-
diana  Deflandre,  1936 (Fig. 3). N. ansata  and
N.  hippocrepis  are  morphologically  very  distinct
species  and branch  together  with maximal  B and
PP  values (100/1.00 for both cases).  N.  penardiana
appears  to be a sister  taxon and closely  branch-
ing  with N. galeata  with a 1.00 PP value. Clade
3  is robustly supported  and represents  a group
of  sequences  derived  from Hyalosphenia  papilio
Leidy,  1875. There were high genetic  distances (up
to  8%,  Supplementary  Table  S1)  within this mor-
phospecies,  suggesting  more  a species  complex
than  a single  species.  Clade  4 comprises  species  of
the  Nebela tincta  major-bohemica-collaris  species
complex  (Gilbert  et al. 2003;  Heal 1963) such as
N.  bohemica Taranek, 1882, N. tincta  (Leidy, 1879)
Awerintzew,  1906,  and N. flabelullum  Leidy, 1874
(Fig.  4).  Although the respective  position  of species
within  this  clade  remained  unresolved,  the whole
clade  receives  relatively  high support  with 79 B
and  0.99  PP values. Clade  5 is represented  by iso-
lates  of Quadrulella  symmetrica  Wallich  1863 and
its  variety  longicollis (Fig. 5).  The  clade  was well
supported  (98 B and 1.00 PP).  As for H.  papilio,
the  genetic  distances  between isolates  were  rela-
tively  high, suggesting the existence  of a complex
of  species. Clade  6, chosen as the outgroup  of our
tree  based on  previous  results  (Lara  et al. 2008),
comprises  species that  are characterized  by a well-
developed  neck  in the shell: Alocodera  cockaynii,
Nebela  lageniformis, N. nebeloides  and  N. wailesi
(Fig.  6).  Finally,  some  species had  an  uncertain
position  in  the tree: Certesella martiali Certes 1889,

the newly found species  N. meisterfeldi n. sp.  (see
below),  Nebela  speciosa  Deflandre,  1936 and  N.
tubulosa  Penard, 1890  (Fig.  7).

Discussion

The  use of molecular markers  offers  a way to
reassess  the  validity  of taxonomic  systems based
on  morphology  and  provides  new  criteria for
species  discrimination.  Molecular taxonomy  has
revealed  the  presence  of a large  cryptic or pseudo-
cryptic  diversity (Hebert  et al.  2004b;  Heger et al.
2011a;  Kolisko et al.  2010) while molecular  phy-
logeny  and phylogenomics  have led to major
revisions  in the  classification  of  most groups of
organisms  (Baldauf  2003;  Burki  et al. 2008).  In
this  study we have tested and demonstrated for
the  first time  the usefulness  of COI as a DNA  bar-
coding  marker  for the arcellinid  testate  amoeba.
Our  results provide evidence for (1) the discrimi-
nation  of  morphospecies  and the assessment of
cryptic  diversity within  the Arcellinida  and  (2) the
phylogenetic  relationships  within the  group of “core
Nebelas”  and related  taxa.

Phylogeny of the “core Nebelas” and
Related Taxa, Notes on their Ecology

In 1874  Leidy  created  the  genus  Nebela,  for  tes-
tate  amoebae  with a test  “composed  of discoid
plates  and  minute  rods, apparently  siliceous and
intrinsic  to the structure of the animal”.  Leidy
restricted  the genus  Difflugia Leclerc, 1815 to
“those  rhizopods  with  lobose  pseudopods, which
ordinarily  possess  a covering  or test  composed
of  extraneous  bodies,  such  as particles of quart-
zose  sand, and  diatom  cases” (Leidy 1874).
Schultze  (1877)  first defined  families Arcellidae, Dif-
flugidae,  Hyalospheniidiae,  and Quadrulidae. He
replaced  the genera  with organic  homogenous
test  such  as Hyalosphenia  Stein, 1859 into fam-
ily  Hyalospheniidae,  the  genus Nebela Leidy, 1874
into  Difflugidae  and  genera  with quadratic plates,
such  as Quadrula  Schultze,  1875  into Quadrulidae.
Basing  on the presence  of siliceous plates Taranek
first  defined  family  Nebelidae  in 1882  by unify-
ing  the genus Nebela,  Lesquereusia  Schlumberger,
1845,  Corythion  Taranek,  1881  and Quadrula
(Quadrulella)  (Taranek  1882). In 1942  Jung rede-
fined  family  Nebelidae  and  organised it into  11
genera:  Alocodera, Apodera,  Argynnia,  Deflan-
dria,  Nebela,  Physochila, Pterygia, Penardiella,
Quadrulella,  Schaudinnia  and  Umbonaria (Jung
1942). Unfortunately  Jung’s  classification lacked
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Figure  3.  Scanning  electron  and  light  micrographs  of  group  2  morphospecies:  A.  and  B.  Nebela  ansata  from
Peggy’s Cove,  Canada  (picture  A  from  Heger  et  al.  2011b).  C.  and  D.  N.  hippocrepis  from  Cape  Breton,  Canada.
E. N.  galeata  from  Cape  Breton,  Canada.  F.  N.  penardiana  from  Vitosha,  Bulgaria.  Scale  bars  represent  50  �m.

type designations.  All  genera  containing more than
one  species  and lacking  type designation  are  in
discordance  with international  code  of zoologi-
cal  nomenclature  article  13.3,  and  hence  do not
exist  (i.e. they are technically considered  “unavail-
able”)  for all  purposes of the code.  Meisterfeld
(2002)  re-organised  Nebela  and  closely  related
taxa  into two families:  taxa with rigid,  chitinoid,
organic  and non-areolar test  (namely Hyalosphenia
and  Leptochlamys West, 1901)  were grouped  in the
Hyalospheniidae  and  genera with tests composed
of  plates  of small  euglyphids  or diatom  fragments
(Apodera  Loeblich  and Tappan,  1961,  Argynnia

Vucetich, 1974, Certesella  Loeblich  and Tappan,
1961,  Nebela, Physochila  Jung, 1942, Porosia
Jung,  1942, Schoenbornia  Decloitre,  1964) were
grouped  in the Nebelidae.  Ogden  (1979) placed
the  genus  Quadrullela  Cockerell, 1909  into the Les-
quereusiidae  Jung, 1942 with  other  taxa building
shells  from  endogenous  (self-secreted) siliceous
elements  (rod-like,  nail-shaped  or  rectangular) to
which  mineral  particles  may be added (in the  case
of  Netzelia Ogden,  1979).

We obtained  molecular  data  for most  common
species  belonging  to the “Nebela”  group. Our
phylogenetic  analyses demonstrated  that Nebela
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Figure  4. Scanning  electron  micrographs  of  Nebela  morphospecies:  A.  Nebela  flabellulum  from  Lynn  Peak,
Canada. B.  N.  tincta  ssp.  galeata  from  Volcán  Poás,  Costa  Rica.  Scale  bar  represent  20  �m.

sensu stricto is paraphyletic  and includes  several
species-complexes  and cryptic species.  Genera-
tions  of taxonomists  have classified  the  different
members  of this clade  primarily  on the  basis of
test  composition,  such  as  the  secreted  organic
test  in Hyalosphenia  papilio,  the  secreted quad-
rangular  plates  in Quadrulella  symmetrica,  and the
siliceous  shell  plates recycled  from  other  testate
amoebae  in Nebela tincta (Deflandre  1953, Jung
1992;  Meisterfeld  2002;  Schultze  1877;  Taranek
1882).  In agreement  with previous  molecular  phy-
logenetic  studies  (Lara et al. 2008;  Nikolaev  et al.
2005),  our  results  invalidate this approach  and
show  that these genera  together constitute a dis-
tinct  clade; therefore,  test  composition  should not
be  considered as the primary criterion  for  distin-
guishing  major taxa within  the “Nebela”  group. It
is  still  possible,  however,  that phylogenetic  rela-
tionships  among arcellinid  taxa  could  be  inferred
from  the general  shape of the  test (e.g.  com-
pressed  bottle-shape  in the case  of the  “Nebela”
group).

An  interesting  case is Argynnia dentistoma,  pre-
viously  classified as Nebela and characterised  by
a  typical compressed  vase-shaped  test but lack-
ing  a neck and  with a rougher  shell  surface  and
especially  apertural  rim.  Argynnia was shown to
branch  at the  base of the “core Nebelas”  (Lara  et al.
2008).  The  rougher  and less elaborate  shell of Arg-
ynnia  thus could be interpreted as representing an
intermediate  form between the  “Nebela” group  and
agglutinating  taxa such as Difflugia.  Also the results
of  SEM  studies  on the shell ultrastructure  in A. den-
tistoma  show that with  its structured  organic  cement
network  this species  is more similar to the species

of the  genus  Difflugia  than to those of the genus
Nebela  (which  have usually an unstructured sheet-
like  organic  cement  with a single  pores) (Ogden
and  Hedley 1980; Todorov  et al. unpublished data).
Further  work is required  especially  on apparently
more  distant  genera  such as Difflugia and  Cen-
tropyxis  Stein,  1857  as well as  potentially closely
related  taxa such as Microquadrula  Golemansky,
1968  and Leptochlamys  to test these hypotheses.
As  more distant  taxa  are included  however less
variable  genes  will need to be  sequenced, start-
ing  with the SSUrRNA gene as used by Nikolaev
et  al. (2005),  Lara  et  al. (2008),  or  Kudryavtsev et al.
(2009).

The  general  tree of the “core Nebelas” consists
of  a series of strongly supported clades, but the
relationships  among  these clades remain undeter-
mined.  As a general  rule, members  of each clade
possess  some  common  morphological  features,
but  many  are also characterized  by common eco-
logical  preferences.

Clade 1, constituted  by Nebela  carinata  and
N.  marginata  corresponds  to the (unavailable for
lack  of type species  designation)  genus Pterygia
described  by Jung  (1942) based on the presence
of  a lateral  keel  on the side of the test. In N. cari-
nata  the keel  is wide and conspicuous,  whereas in
the  slightly smaller N. marginata,  the keel is nar-
rower  and starts at about  the  middle  of the length
of  the test. Both  species  are large  (above  120 �m)
and  are restricted to wet microsites  in Sphagnum-
dominated  ecosystems  (Booth 2008; Charman and
Warner 1997).

Clade  2 includes  N. ansata, N.  hippocrepis,  N.
galeata  and N. penardiana. These  species have
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Figure  5.  Scanning  electron  micrographs  illustrating  morphological  variations  within  the  Quadrulella  symmet-
rica (sensu  lato)  morphospecies:  A.  Q.  symmetrica  from  Bulgaria.  B.  Q.  symmetrica  from  Canada.  C.  Q.
symmetrica from  Switzerland.  D.  Q.  longicollis  from  Bulgaria.  Scale  bars  represent  20  �m.
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Figure  6.  Scanning  electron  micrographs  of  outgroup  species.  A.  Padaungiella  lageniformis  from  Bulgaria.  B.
Alocodera cockayni  from  Argentina.  C-D.  A.  cockayni  from  Chile  and  close  view  of  its  aperture  respectively.
E-F. P.  wailesi  from  Switzerland  and  close  view  of  its  aperture.  G-H.  P.  nebeloides  from  France  and  close  view
of its  aperture.  Scale  bars  represent  20  �m.
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Figure  7.  Scanning  electron  and  light  micrographs  of  species  having  uncertain  phylogenetic  position:  A.  Nebela
tubulosa from  Bulgaria.  B.  Certesella  martiali  from  Tierra  del  Fuego  Province,  Argentina.  C.  Nebela  meisterfeldi
from Strathcona  Park,  Canada.  D.  N.  meisterfeldi  from  Grouse  Mountain,  Canada.  E.  N.  meisterfeldi  from
Strathcona Park,  Canada.  F.  Detailed  picture  of  the  margin  of  N.  meisterfeldi  test  from  Strathcona  Park,  Canada.
Scale bars  represent  50  �m  excepted  for  the  detailed  pictures  of  N.  meisterfeldi  (F):  20  �m.
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an elongated  test  (Fig. 3). They are  character-
istic  for  nutrient-poor  to nutrient-rich  fens (Heger
et  al. 2011b; Lara  et al. 2008;  Leidy  1879;  Todorov
2010).  N. ansata  and N. hippocrepis, two species
that  branch  together  in our  tree  with good  sup-
port,  share  some  morphological  features  (almost
the  same  size and comparable shape).  However,
N.  ansata  is  a  distinctive  species  characterised by
two  lateral  hollow horns (Heger  et al. 2011b;  Leidy
1879).  Although N. hippocrepis,  N. galeata  and  the
members  of clade 1 (N.  carinata  and N. marginata)
are  characterized  by the presence  of a  keel, these
species  do not branch  together; the shape of  the
latter  being clearly  different  in members  of clade 1
(thin)  vs  clade 2 (hollow, wide, bump-like),  it is likely
that  the ontogenesis  of the two  structures  differ.

The  taxa that  constitute  clade  3 (Hyalosphenia
papilio,  sensu lato)  are common  and  characteristic
for  Sphagnum-dominated  ombrotrophic  bogs and
poor  fens (Booth  and Meyers  2010). It is possi-
ble  that the establishment  of mixotrophy  through
acquisition  of zoochlorellae by H. papilio  ancestors
exerted  an evolutionary  pressure  that prompted
quick  morphological  changes.  The sequencing  of
non-photosynthetic  Hyalosphenia,  such  as H. sub-
flava  Cash, 1909,  H. cuneata  Stein,  1857, might
bring  clues to understand the  evolution  of this
group.  Based  on the  SSUr  RNA  gene  H. elegans
was  shown  to branch  within  the  “core  Nebelas”  but
not  close  to H.  papilio.  We were  however  unfortu-
nately  unsuccessful  in obtaining  a COI sequence
for  H. elegans. More work  is therefore  necessary
before  a possible  revision  of the taxonomic  status
of  this species can be proposed.  The  remain-
ing  clades  appear  also related  by their  respective
ecological  preferences:  clade 4 represents  the
“Nebela  tincta major-bohemica-collaris”  complex
(Gilbert  et al. 2003;  Heal 1963),  a group of small
to  medium-sized  species (Fig. 4)  showing  a ten-
dency  to colonize relatively  drier  habitats  such as
forest  humus  and Sphagnum  hummocks  (Mitchell
et  al. 1999, 2004).  Species belonging  to clade  5
and  6 (i.e. respectively  Quadrulella  sp. and  the
group  of  Padaungiella  lageniformis – former name
Nebela  lageniformis  Figures  5 and  6), in turn, are
respectively  linked to minerotrophic  habitats  such
as  fens and forest soils (Bamforth  2010;  Deflandre
1936),  although  Alocodera  cockayni  is found in olig-
otrophic  peatlands  (Charman 1997; Zapata  and
Fernández  2009).

Cryptic Speciation within “core Nebelas”

Cryptic  speciation  is thought  to be common
among  protists.  For instance, this was observed

in euglyphid  testate amoebae,  kinetoplastids,
foraminiferans  and  diatoms  (Beszteri  et al. 2005;
Heger  et al. 2010;  Koch  and Ekelund  2005; Kucera
and  Darling  2002). Our  results show that  cryptic
diversity  is also  common  at  least  within the  “Nebela”
group  and likely the  Arcellinida in general.

Our  molecular  data separated  what we consid-
ered  to be N. carinata  into two clear-cut,  robustly
supported  groups.  The  important  genetic dis-
tance  between the two groups  (14% divergence
in  nucleotide  sequences)  suggests  that these two
forms  should  be considered  as separate species.
This  would  be in agreement with genetic  distances
of  7.3%-21.6%  among  species of the amoebozoan
naked  amoeba  Vannella  (Nassonova  et al.  2010).
Further  investigation  will clarify whether  there exist
slight  morphological  differences  between  these two
forms  (pseudocryptic  diversity) or if no external
morphological  features  can discriminate  them (true
cryptic  diversity)  and if the two clades differ  with
respect  to ecology.

Another  case  of cryptic or pseudo-cryptic spe-
ciation  is to be found within  Hyalosphenia papilio,
which  appears  here  much  more  as a species com-
plex  than  as a single taxonomic  unit based on
observed  genetic distances.  Indeed,  it  is  divided
into  several subclades  (Fig. 2)  and genetic dis-
tances  between isolates  vary  up to 7% in nucleotide
sequences.  Booth  and Meyers  (2010) reported
morphological  (and  ecological)  variation within  H.
papilio  - shells  collected  in wetter habitats  tended
to  bear  more  pores.  Booth  and Meyers  (2010) inter-
preted  this  as phenotypic  plasticity. This situation is
further  complicated  with  the possible  occurrence of
H.  ovalis Wailes, 1912, a supposed  sister species
(but  lacking zoochlorellae)  whose  identity remains
dubious  (Booth  and Meyers  2010). A  detailed inves-
tigation  with  careful morphological  documentation
of  the obtained  isolates  will be  needed  in the future
to  investigate the limits  between  the  different taxa
that  compose  this clade, and  to  clarify to which
extent  variability is the  product  of  phenotypic plas-
ticity  or is genetically  fixed.

Another clear case of a species complex is
the  Nebela  tincta major-bohemica-collaris  group
(Fig.  4), a group  of  very  similar-looking  morphos-
pecies  (Deflandre  1936;  Heal 1964) which  are often
not  distinguished  from each other (Charman et al.
2000;  Gilbert et  al. 2003; Heal 1963; Warner 1987).
N.  flabellulum  with its unusually  wide test falls within
this  group,  as in SSU rRNA gene-based  analyses
(Lara  et al. 2008). It appears  clearly from Figure 2
that  the taxonomic  status of the varieties of  N. tincta
would  deserve specific  status, as suggested in  a
previous  work (Lara et al. 2008).
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Our  results show that  genus  Quadrulella  Cock-
erell,  1909 branched  within the  “Nebela” group.
Partial  SSU  sequences  also indicate that Q. sym-
metrica  belong  to  the “core Nebelas”  (T.  Heger
unpublished  data).  The studied specimens  corre-
sponded  morphologically  in all cases  to the species
Q.  symmetrica,  including a variety  described as
longicollis.  Here  also,  genetic distances  (up  to 11%)
suggest  rather a species complex  than intraspe-
cific  diversity.  SEM micrographs  revealed  some
differences  of the shell shape, as  well  as differ-
ences  in the  size and  disposition  of the  secreted
plates  between  different  isolates  (Fig. 5), and
calls  for  a detailed  study of this specific group.
Quadrulella  is one  of  the few arcellinid  genera
building  its shell from self-secreted  siliceous par-
ticles  (Meisterfeld  2002). Differences  in  the  size
and  shape  of self-secreted  scales (idiosomes)
have  proved  to be taxonomical  characters  that
could  be  used for  species discrimination  in the
euglyphid  testate  amoebae of genus Cyphoderia
(Heger  et al. 2010).  The position  of Q. longicol-
lis  (former name: Q. symmetrica  var longicollis)  in
our  tree, its genetic  distance from  Q. symmetrica
species  as well as described  morphological  differ-
ences  (Deflandre  1936),  confirm  that it is indeed  an
independent  taxon.

Clade 6 contains  species  with bottle-shaped  test
and  an  elongated  tubular  neck (Nebela  lageni-
formis,  N. nebeloides,  N. wailesi and  Alocodera
cockayni,  Fig.  6).  N. nebeloides  was initially
described  as Difflugia nebeloides  by Gauthier-
Lièvre  and Thomas  (1958)  but was recently
transferred  to genus Nebela  by Todorov  et al.
(2010).  In an earlier  study based on  SSU rRNA
gene  sequences  (Lara et al. 2008),  Apodera
vas  branched with N. lageniformis. We  therefore
transfer  the Nebela  species of this  group,  which
constitute  a sub-clade,  to new genus Padaungiella
(see  the section  Taxonomic  Actions).

Taxonomic Actions

1. Quadrulella  symmetrica  var. longicollis
(Taranek  1882)  to Quadrulella  longicollis
(Taranek  1882)

Note: A formal change  is not required  in this
case  according to the International  Code  of
Zoological  Nomenclature:  1) According  to arti-
cle  45.6.3,  as the name  was published  before
1961  using the abbreviation  var.,  it is deemed
to  be  subspecific  rather than  infrasubspecific
and  therefore  falls  under  rulings  for species-
group  nominal  taxa  (Chapter 10).  2)  According
to  article  46.1,  names  established  at either

species  ranks (species  or  subspecies)  are simul-
taneously  established  at the  other  rank,  with
same  author  and same  type. Authority thus  is
unchanged.

2.  Description  of  a new species:  Nebela  meis-
terfeldi  n. sp.  Heger et  Mitchell

Taxonomic  summary
Arcellinida Kent  1880
Nebelidae  Taranek 1882
Nebela meisterfeldi  n.  sp. Heger  et Mitchell

Description:  The  shell is acrostome, elon-
gated  pyriform,  laterally  slightly  compressed,
with  wavy lateral  margin,  brownish in  colour
(Fig.  7 D and  F). Shell  composed  of small par-
ticles  likely obtained  from preys  (i.e. euglyphid
testate  amoebae).  The aperture  is oval, sur-
rounded  by a very thin collar of organic cement
(Fig.  7C and D). Dimensions  (based on 6 indi-
viduals):  length 147-160  �m, breadth 69-85 �m,
diameter  of aperture  37-42  �m.

Hapantotype:  The  shells were collected from
Sphagnum  mosses  in a  peatland  in Strathcona
Park,  Vancouver  Island (49◦42′N;  125◦18′W)
and  from  aquatic  mosses  at the border of a
small  stream  in Grouse  Mountain (49◦23′N;
123◦04′E),  British  Columbia,  Canada. Dry moss
samples  containing  this species are deposited
in  the  sample  collection of  the laboratory of
Soil  Biology,  University  of Neuchâtel, Switzer-
land  (codes: EM-286,  299).  One SEM stub  with
several  specimens  is deposited  at  the  Natural
History  Museum  of  Neuchâtel  (Ref  Nr. SEM-90,
UniNe-EM-1).  COI  sequences  were deposited
in  Genbank  with accession  numbers  JN849052
and  JN849053.

Etymology: This species  was named in
honor  of Dr. Ralf Meisterfeld,  one  of the most
distinguished  researchers in  testate amoebae
systematics  and  ecology in  recognition for his
contribution  to this field.

Note: Nebela  meisterfeldi  resembles N.  gra-
cilis,  N. gracilis  var. stomata  Wailes, 1912 and
N.  penardiana  by the shape of its shell. It  is dis-
tinguished  from the above  mentioned species
by  the  presence  of wavy lateral  margins. Our
molecular  data did  not  reveal  a close  affinity with
N.  penardiana.

3.  Genus  Padaungiella  Lara  et Todorov
In 1942 Jung  described  genus  Schaudin-

nia  as follows: “Von  Nebela  s. str. durch den
deutlich  abgesetzten  Hals, der den Schalen
eine  flaschenartige  Gestalt verleiht, von  den
übrigen  Gattungen  durch das Fehlen von Merk-
malen  zu unterscheiden,  die den  anderen
Nebelien  Genera  das Gepräge  geben”. English
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translation:  “Differs  from Nebela  s.  str. by a
distinct  elongated  neck that  gives  the shell a
bottle  shape, and from other  Nebelid  genera
by  the lack  of distinctive features (that char-
acterises  each of them)”.  He included in this
genus  Nebela  lageniformis,  N. tubulata  and  N.
wailesi.  Unfortunately  as Jung’s  classification
lacked  type  designations,  the  name  Schaudin-
nia  is unavailable,  and these species  remained
in  genus Nebela.  Our  molecular data  shows
that  genus  Nebela  is paraphyletic.  We there-
fore  transfer  Nebela  lageniformis and  its closely
related  species (Nebela  nebeloides  and N.
wailesi)  to a new genus  Padaungiella  Lara et
Todorov.  Here,  we propose Padaungiella  lageni-
formis  (Penard, 1890)  Lara as the new type
species  for  the genus. Consequently,  the follow-
ing  names  are  changed:

Nebela  lageniformis  Penard,  1890 to
Padaungiella  lageniformis comb. nov.
(Penard,  1890)  Lara  et Todorov
Nebela wailesi Deflandre,  1936  to
Padaungiella  wailesi comb.  nov. (Deflandre,
1936)  Lara  et Todorov
Nebela wetekampi  Jung,  1942 to
Padaungiella  wetekampi  comb. nov. (Jung,
1942)  Lara  et Todorov
Nebela tubulata  Brown,  1911 to Padaungiella
tubulata comb.  nov. (Brown,  1911)  Lara  et
Todorov
Nebela  nebeloides  (Gauthier-Lièvre  et
Thomas,  1958)  Todorov et al. to Padaungiella
nebeloides comb. nov. (Gauthier-Lièvre  et
Thomas,  1958)  Lara  et Todorov
Syn.: Difflugia  nebeloides  Gauthier-Lièvre  et
Thomas,  1958
Nebela nebeloides  (Gauthier-Lièvre  et
Thomas,  1958)  Todorov,  Golemansky  et
Meisterfeld,  2010

Etymology  :  The  name  of this genus  is
derived  from the  name  of a tibeto-burmese  eth-
nic  minority  of Burma,  called  “Padaung”.  The
women  of this tribe  traditionally  wear  very long,
coiled  neck rings, which are  constituted  of a sin-
gle  brass  coil  placed  around the neck.  The  length
of  the coil (which  is gradually  increased)  and the
added  weight  presses  the clavicle and  the rib
cage,  resulting  in the appearance  of a  very long
neck.

4.  Families Hyalospheniidae  and Nebelidae
Hyalospheniidae  and  Nebelidae  were

described  respectively  by  Schultze  in  1877
and  Taranek  in 1882 and  revised  on  several
occasions  (Fig. 1). Following  the  latest  revi-
sion  of the two families  (Meisterfeld  2002) the

Nebelidae  included  genera  with tests composed
of  collected  or predated  round  or  oval siliceous
plates,  fragments  of diatoms  or  mineral grains:
Alocodera,  Apodera,  Argynnia, Certesella,
Geamphorella,  Jungia,  Nebela, Physochila,
Pseudonebela,  Porosia, and  Schoenbornia
and  the Hyalospheniidae  included  genera with
chitinoid,  clear, completely  organic,  non-areolar
test:  Hyalosphenia  and Leptochlamys. Given
that  genus Hyalosphenia  clearly branches
within  the “core Nebelas”  clade and that the  dis-
tinguishing  character of  Hyalospheniidae (shell
transparent  and entirely secreted) can also be
observed  in  some  Nebelidae  (Alocodera,  N.
tincta)  the  two families need  to be synonymised.
The  name  Hyalospheniidae  Schultze 1877
takes  precedence  according  to the principle of
priority  (article 23 of the  international code of
zoological  nomenclature).

Diagnosis of the Hyalospheniidae
Schulze, 1877 emend. Kosakyan et Lara

The  test is rigid, colorless or yellowish-brown,
flask-vase  shaped,  oval or pyriform,  dorso-ventrally
compressed.  The shell is either  entirely self-
secreted  (e.g. Hyalosphenia) composed of  an
organic  matrix, or  with  addition  of  self-secreted
siliceous  plates  (Quadrulella) or recycled shell
plates  of small  euglyphids  or other similar material
such  as diatom  frustules  incorporated  in the test.
The  pseudostome  is terminal and is bordered by a
thin  organic  collar.

Physochila  and  Argynnia  do not  form a  mono-
phyletic  clade with the Hyalospheniidae  based on
molecular  phylogenetic  data  (Lara et al. 2008;
Gomaa  et al.,  unpublished  data) and  also  dif-
fer  from other Nebelidae  by their  morphology,
hence  are excluded  from the  Hyalospheniidae and
are  incertae  sedis.  Similarly, Leptochlamys differs
from  all Hyalospheniidae  by a unique combina-
tion  of characters: shell circular  in  cross-section,
round  pseudostome,  and  unique  hyaline pseu-
dopod  (Cash  and Hopkinson  1909)  and  is now
deemed  incertae  sedis. As a consequence, the
Lesquereusiidae  now includes  Lesquereusia, Net-
zelia,  Microquadrula  and Pomoriella.

Methods

Sampling  and  species  isolation:  Testate  amoebae  were
obtained  from  Sphagnum,  other  mosses  and  forest  litter  col-
lected from  different  geographical  sites  (Table  1).  They  were
extracted  by  sieving  and  back  sieving  using  appropriate  mesh
size and  isolated  individually  with  a  narrow  diameter  pipette
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under  the  dissecting  microscope.  Cells  were  rinsed  with  dem-
ineralized  water.  We  characterized  the  morphology  of  these
distinct  “populations”  (=individuals  of  a  given  morphospecies
isolated  from  one  sample)  by  scanning  electron  or  light
microscopy  when  enough  cells  were  available.  To  make  sure
that the  ultrastructure  of  the  cells  did  not  differ  within  popula-
tions, several  SEM  micrographs  from  different  individuals  were
taken and  subsequently  compared.

Scanning  electron  microscopy:  Testate  amoeba  shells
were mounted  on  stubs  and  then  kept  during  one  week  in  a  des-
iccator.  The  shells  were  coated  with  gold  in  vacuum  coating  unit
and then  observed  either  with  a  JEOL  JSM-5510  microscope
(Tokyo,  Japan)  at  10  kV  or  with  a  Philips  XL30  FEG  microscope
(Amsterdam,  The  Netherlands)  at  3  kV.

DNA amplification:  A  guanidine  thiocyanate  protocol
(Chomczynski  and  Sacchi  1987)  was  used  to  extract  DNA
(1 to  10  cells  were  isolated  per  DNA  preparation)  or  single
cell were  used  without  DNA  extraction.  The  mitochondrial  COI
sequences  were  obtained  by  polymerase  chain  reaction  (PCR)
in two  steps:  for  first  using  the  LCO1490  and  HCO2198  “Univer-
sal” COI  primers  designed  for  diverse  metazoan  invertebrates
(Folmer  et  al.  1994).  A  second  PCR  was  performed  on  the  prod-
ucts, using  again  the  general  primer  HCO  and  a  specific  primer
Arcelcox1F  (CAA  AAT  CAT  AAA  GAT  ATT  GGD  AC);  designed
to amplify  most  “core  Nebelas”  or  /  the  general  primer  LCO  with
Apocox  R  (CCW  GGA  TGD  CCT  TCA  ATA  CTA  CT),  specific
for the  group  6,  situated  on  position  366  of  the  Padaungiella
lageniformis  COI  sequence.  The  PCR  cycling  profile  was  the
same for  the  first  and  second  PCRs  (except  for  group  6  species
for which  we  used  specific  pair  of  primers  LCO  and  Apocox).
DNA  was  amplified  in  a  total  volume  of  25  �l  with  an  amplifi-
cation  profile  consisting  3  min  initial  denaturation  step  in  a  40
cycles program  of  15  s  95 ◦C,  15  s  40 ◦C,  and  1  min  at  72 ◦C  with
the final  extension  at  72 ◦C  for  8  min.  For  species  of  clade  6  the
following  program  was  used:  5  min  initial  denaturation  step  in  a
40 cycles  program  of  15  s  95 ◦C,  15  s  55 ◦C  and  1  min  at  72 ◦C
with the  final  extension  at  72 ◦C  for  10  min.

The  PCR  products  were  purified  using  the  High  Pure  PCR
Purification  Kit  (Roche,  Basel,  Switzerland)  or  the  QIAquick
PCR Purification  Kit  (Qiagen,  Hilden,  Germany)  and  then
directly  sequenced.  Sequencing  was  carried  out  using  a
BigDye197  Terminator  Cycle  Sequencing  Ready  Reaction  Kit
(Applied  Biosystems)  and  analysed  either  with  an  ABI-3130xl
or a  3730S  48-capillary  DNA  sequencer  (Applied  Biosystems).
COI sequences  are  deposited  in  GenBank  with  the  accession
numbers  given  in  Table  1.

Phylogenetic  analyses:  The  data  set  used  for  phyloge-
netic analyses  (668  bp)  comprised  59  COI  sequences.  The
sequences  were  aligned  manually  using  BioEdit  software  (Hall
1999). The  alignment  is  available  from  the  authors  upon
request.  Trees  were  reconstructed  using  alternatively  a  max-
imum likelihood  and  a  Bayesian  approach.  The  maximum
likelihood  tree  was  built  using  the  RAxML  v7.2.8  algorithm
(Stamatakis  et  al.  2008)  as  proposed  on  the  Black  Box  por-
tal (http://phylobench.vital-it.ch/raxml-bb/)  using  the  GTR+�+I
model.  Model  parameters  were  estimated  in  RAxML  over  the
duration  of  the  tree  search.  We  used  the  group  of  Padaungiella
lageniformis  (i.e.  clade  6)  to  root  all  trees,  based  on  the  fact  that
these species  appear  as  sister  clade  of  the  “core  Nebelas”  in
the SSU  rRNA  gene-based  phylogeny  (Lara  et  al.  2008).  We
performed  similar  phylogenetic  analyses  using  Vannella  spp.
as outgroup  (GQ354136;  GQ354148;  GQ354154;  GQ354165;
GQ354171;  GQ354177;  GQ354184;  GQ354191).  This  tree
revealed  six  Arcellinida  groups  (data  not  shown)  which  cor-
respond  to  the  six  clades  of  the  Figure  2.  Bayesian  Markov
Chain  Monte  Carlo  analyses  were  performed  using  MrBayes

v3.1  (Ronquist  et  al.  2005)  with  a  general  time  reversible  model
of sequence  evolution  with  four  gamma-distributed  rate  varia-
tion across  sites  and  a  proportion  of  invariable  sites.  Bayesian
MCMC  analyses  were  carried  out  with  two  simultaneous  chains,
and 1,000,000  generations  were  performed.  The  generations
were  added  until  standard  deviation  of  split  frequencies  fell
below 0.01  according  to  the  manual  of  MrBayes  3.1  (2005).  For
every 1,000th  generation,  the  tree  with  the  best  likelihood  score
was saved,  resulting  in  10,000  trees.  The  burn  in  value  was  set
to 25%.  Trees  were  viewed  using  FigTree  (program  distributed
as part  of  the  BEAST  package).  The  sequence  divergence
between  sequences  were  calculated  using  the  program  R  ver-
sion 2.9.1  (R  Development  Core  Team  2009).  Missing  data  was
not counted  during  the  calculation  relative  %  of  sites  that  differ
between  each  pair  of  sequences  (Supplementary  Table  S1).
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