All fatty acids are not equal: discrimination in plant membrane lipids

Anthony A. Millar, Mark A. Smith and Ljerka Kunst

Plant membrane lipids are primarily composed of 16-carbon and 18-carbon fatty acids containing up to three double bonds. By contrast, the seed oils of many plant species contain fatty acids with significantly different structures. These unusual fatty acids sometimes accumulate to ~90% of the total fatty acid content in the seed triacylglycerols, but are generally excluded from the membrane lipids of the plant, including those of the seed. The reasons for their exclusion and the mechanisms by which this is achieved are not completely understood. Here we discuss recent research that has given new insights into how plants prevent the accumulation of unusual fatty acids in membrane lipids, and how strict this censorship of membrane composition is. We also describe a transgenic experiment that resulted in an excessive buildup of unusual fatty acids in cellular membranes, and clearly illustrated that the control of membrane lipid composition is essential for normal plant growth and development.

Structural membrane glycerolipids of all plant cells contain almost exclusively 16-carbon and 18-carbon fatty acids, with up to three methylene-interrupted double bonds (16:0, 16:1*, 18:0, 18:1, 18:2, 18:3, and in some species 16:3). These fatty acids are often referred to as common fatty acids. In contrast with the conservative fatty acid composition of plant membrane lipids, tremendous fatty acid diversity exists in the seed storage lipids. To date, >300 naturally occurring fatty acids have been described in seed oils [1], and it has been estimated that thousands more could be present throughout the plant kingdom. The structures of these fatty acids can vary in chain length from 8 to 24 carbons, they can have double bonds in unusual positions, or novel functional groups, such as hydroxy, epoxy, cyclic, halogen or an acetylenic group on their acyl chain (Fig. 1). Because their chemical structures deviate significantly from the common fatty acids and they are usually only found in a few plant species, these fatty acids are considered unusual. In many cases, unusual fatty acids are the predominant fatty acid in the seed oil of a plant species.

The reason for such a great diversity of seed oil constituents is unknown, but plants can tolerate high levels of unusual fatty acids in storage lipids because they are sequestered into oil bodies and have no structural function. The special physical and chemical properties of many unusual fatty acids might explain why they are excluded from the membrane lipids of seeds, and are absent from other parts of the plant. It is believed that they would perturb the structural integrity of the membrane bilayer and have deleterious effects on the cell. Consequently, storage and membrane lipids have different fatty acid compositions.

It is puzzling how these different fatty acid compositions become established and are maintained. This question is particularly pertinent as the production of storage and membrane lipids occurs simultaneously and involves common precursors [2]. Castor bean (Ricinus communis), for example, produces seed oil containing nearly 90% ricinoleic acid (18:1-OH), an unusual hydroxy fatty acid (Fig. 1). Analysis of the membrane lipids from developing castor bean seeds indicates that even during its most active period of biosynthesis this fatty acid accounts for only a small proportion of the total fatty acids in the membrane [3]. This observation is striking because it is a membrane lipid, phosphatidylcholine, which serves as the substrate for 18:1-OH synthesis. Thus, the mechanisms that edit out unusual fatty acids from membrane lipids and then channel them to storage lipids must be extremely selective and efficient. How strict this editing is, probably depends on the structure of the particular unusual fatty acid. For example, the structure of petroselinic acid (18:1Δ6) deviates from common acyl groups only by the position of the double bond. Therefore, 18:1Δ6 can accumulate in membrane lipids to a much greater extent than fatty acids such as 18:1-OH, which contains a polar oxygenated functional group that would be incompatible with the hydrophobic environment of the membrane.

The membrane-editing ability of plants is also important for biotechnology. Many of the unusual fatty acids represent valuable feedstocks for the chemical industry. However, plants that accumulate these fatty acids are often not amenable to agriculture. Therefore, there is an enormous interest in generating transgenic crop plants engineered to accumulate high levels of specific unusual fatty acids. To achieve this goal it might be essential to prevent an accumulation of unusual fatty acids in seed membrane lipids. Thus, engineering projects aimed at generating viable, high-yielding transgenic plants, probably require the introduction of genes involved in the exclusion of unusual fatty acids from membranes [4]. Here we discuss how such exclusion might be accomplished.

Pathways for the synthesis of unusual fatty acids

With the exception of a few commercially valuable unusual fatty acids, relatively little is known about the biosynthesis of these compounds. The proposed pathways leading to the synthesis of the unusual fatty acid discussed in this review are described below.

Medium-chain fatty acids

In plants, de novo fatty acid biosynthesis occurs in the plastid where acetate (C2) is elongated by the sequential addition of further C2 units while attached to a soluble acyl-carrier-protein (ACP) [5]. For common fatty acid formation, the growing acyl chain is terminated when it is 16 or 18 carbons long, by the action of an acyl-ACP thioesterase, which cleaves the acyl group from the ACP to produce a free fatty acid. Plants that synthesize medium-chain fatty acids (MCFA; C8-C14) have an additional acyl-ACP thioesterase.
thioesterase, which prematurely cleaves the acyl-chain from ACP, redirecting fatty acid synthesis from long (C16–C18) to medium chains (C8–C14)6.

Unusual monounsaturated fatty acids
The synthesis of common monounsaturated fatty acids is catalysed by a soluble plastidial desaturase, which introduces a double bond between carbons 9 and 10 of a C18 acyl-ACP (D9 position, counting from the carboxyl end). Plants that synthesize unusual monounsaturated fatty acids have an additional desaturase, which is closely related to the D9-desaturase, but introduces a double bond at a different location on the acyl-ACP. For example, in coriander (Coriandrum sativum), petroselinic acid (Fig. 1) is synthesized by a desaturase that introduces a double bond between carbons 4 and 5 of a C16 acyl-ACP (D4-desaturase). This fatty acid is then extended by two carbons and cleaved from ACP to produce the free fatty acid. These last two steps are thought to require a specialized condensing enzyme and a specialized acyl-ACP thioesterase7.

Hydroxy, epoxy and acetylenic fatty acids
A family of related enzymes is responsible for the synthesis of the fatty acids containing hydroxy8, epoxy and acetylenic functional groups9. These enzymes are structurally similar to extraplastidial membrane-bound Δ12-desaturases (FAD2), and only four amino acid substitutions are needed to convert an 18:1-desaturase into an 18:1-hydroxylase10. The synthesis of these fatty acids is thought to take place on the endoplasmic reticulum and use fatty acids esterified to the major membrane lipid phosphatidylcholine (PtdCho) as a substrate (Fig. 2).

Very-long-chain fatty acids
Very-long-chain fatty acids (VLCFAs; >C18) are synthesized extraplastidially by successive rounds of elongation of a C18 fatty acyl precursor by two carbons originating from malonyl-CoA (Fig. 2). Each elongation step requires four enzymatic reactions: condensation between an acyl precursor and malonyl-CoA, followed by a reduction, a dehydration and another reduction. However, in transgenic experiments expression of a single gene encoding

<table>
<thead>
<tr>
<th>Fatty acid class and example</th>
<th>Name</th>
<th>Principal biosynthetic enzyme</th>
<th>Plant family</th>
<th>% in lipids</th>
<th>TAG</th>
<th>Membrane</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium-chain</td>
<td>Lauric (12:0)</td>
<td>Thioesterase</td>
<td>Lauraceae</td>
<td>54</td>
<td>2.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ricinoleic (18:1)</td>
<td>Diron hydroxylase</td>
<td>Euphorbiaceae</td>
<td>85</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vernalic (18:1Δ2)</td>
<td>Epoxydase</td>
<td>Leaquerella spp.</td>
<td>57</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Petroelic (18:1Δ5)</td>
<td>Double desaturase</td>
<td>Apiaceae</td>
<td>70–75</td>
<td>10.0–20.0</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 1. Examples of some of the unusual fatty acids made by plants. Current commercial sources are indicated by an asterisk.
the condensing enzyme is sufficient for the synthesis of VLCFAs. It appears that the other three enzymes of the pathway are present in all cells and at sufficiently high levels, thus VLCFA biosynthesis is regulated primarily by the expression of the condensing enzyme.\(^{11}\)

Common themes of unusual fatty acid biosynthesis

The pathways described above share several common features. Firstly, the synthesis of these unusual fatty acids involves just one additional or alternative enzymatic step from primary lipid metabolism.\(^ {6,8,9,11,12}\) However, although only one enzyme is needed for their synthesis, other specialized fatty acid biosynthetic enzymes or components are required for their high accumulation\(^ {13}\). Secondly, all the enzymes identified to date that are involved in unusual fatty acid biosynthesis are structurally related to enzymes of primary lipid metabolism. Thus, it appears that ‘housekeeping genes’ have been recruited and specialized for the development of enzymes, which either have altered substrate specificities, or can catalyse closely related but modified reactions.\(^ {14}\) Many of the unusual fatty acids are found in taxonomically dispersed families (Fig. 1), implying that the recruitment of enzymes for the
of how partitioning might be achieved. All three acyltransferases
lipids 16. The 18:1
D
18:1
such as 18:1
otic pathway. By contrast, unusual monounsaturated fatty acids,
released in the plastid in a form that cannot be used by the prokary-
Thioesterases remove newly formed acyl chains from ACP. Their
Thioesterases
mechanisms for the exclusion of unusual fatty acids from
membrane glycerolipids. A wide variety of-glycerolipid biosynthetic enzymes or that they are rapidly edited out
One possibility is that phosphatidic acid and diacylglycerol mol-
storage lipids therefore shares a common pathway referred to as the
glycerol-3-phosphate pathway or the Kennedy pathway15 (Fig. 2).
Because rapid equilibration between the diacylglycerol and
phytol pools is thought to occur, the high selectivity of DAGAT
for diacylglycerols with unusual fatty acids effectively reduces
the levels of unusual fatty acids in PtdCho. By contrast, acyl-
transferases from plant species that accumulate triacylglycerols
with predominantly common fatty acids, such as sunflower (Helianthus)
or maize, are not good at using unusual fatty acids17.

Cytidyl diphosphocholine diacylglycerol choline
phosphotransferase
Cytidyl diphosphocholine diacylglycerol choline phosphotrans-
feronase (CDP-CPT) catalyses several reversible conversions of di-
acylglycerol to PtdCho. Therefore, it could potentially prevent
diacylglycerol species containing unusual fatty acids from mov-
ing into the PtdCho pool, as well as channeling PtdCho-contain-
ing unusual fatty acids into the diacylglycerol pool (Fig. 2). It has
been hypothesized that CPT might be particularly important in
plants where the unusual fatty acid is actually made on PtdCho.
To investigate whether this is true, the specificity of CPT was
examined in vitro using extracts from plants that accumulate
medium-chain, hydroxy and very-long-chain fatty acids. None of
the enzymes tested was able to discriminate between diacyl-
glycerol molecular species containing either common or unusual
fatty acids. Thus, the specificity of CPT is clearly not responsible
for the observed bias between triacylglycerol and membrane fatty
acid composition that exists in those plant species where the
unusual fatty acid is actually made on PtdCho (Ref. 26).

In vitro enzyme studies and genetic engineering have demon-
strated that acyltransferases from other plant species containing
unusual fatty acids have evolved similar properties directed at
efficient targeting of their own unusual fatty acids into triacyl-
glycerols18-21. DAGAT is especially important in this respect. Because
rapid equilibration between the diacylglycerol and
PtdCho pools is thought to occur, the high selectivity of DAGAT
for diacylglycerols with unusual fatty acids effectively reduces
the levels of unusual fatty acids in PtdCho. By contrast, acyl-
transferases from plant species that accumulate triacylglycerols
with predominantly common fatty acids, such as sunflower (Helianthus)
or maize, are not good at using unusual fatty acids17.

Cytidyl diphosphocholine diacylglycerol choline
phosphotransferase
Cytidyl diphosphocholine diacylglycerol choline phosphotrans-
feronase (CDP-CPT) catalyses several reversible conversions of di-
acylglycerol to PtdCho. Therefore, it could potentially prevent
diacylglycerol species containing unusual fatty acids from mov-
ing into the PtdCho pool, as well as channeling PtdCho-contain-
ing unusual fatty acids into the diacylglycerol pool (Fig. 2). It has
been hypothesized that CPT might be particularly important in
plants where the unusual fatty acid is actually made on PtdCho.
To investigate whether this is true, the specificity of CPT was
examined in vitro using extracts from plants that accumulate
medium-chain, hydroxy and very-long-chain fatty acids. None of
the enzymes tested was able to discriminate between diacyl-
glycerol molecular species containing either common or unusual
fatty acids. Thus, the specificity of CPT is clearly not responsible
for the observed bias between triacylglycerol and membrane fatty
acid composition that exists in those plant species where the
unusual fatty acid is actually made on PtdCho (Ref. 26).

In fact, it has now been demonstrated that in developing corian-
der seed, petroselinic acid, an unusual monounsaturated fatty acid syn-
thesized in the plastid, is metabolized through PtdCho during
periods of rapid triacylglycerol biosynthesis26. Based on our current
understanding of lipid metabolism this would appear unnecessary
and raises many puzzling questions. It suggests that PtdCho plays a
role in triacylglycerol metabolism other than its involvement in
modification reactions27. If that is the case, CPT would not need to
exclude this class of unusual fatty acids from the PtdCho pool.

Phospholipases
There is considerable evidence that certain unusual fatty acids can
be removed from membrane lipids by the action of acyl-specific
phospholipases. Moreover, it appears that plants that contain
unusual fatty acids have phospholipase activities that are specific for the same unusual fatty acids that they produce. For instance, castor bean, Cuphea species and Euphorbia lagascae have acyl-specific phospholipase A₂ (PLA₂) activities that selectively hydrolyse hydroxy-acids, medium-chain and epoxy fatty acids, respectively, from their membrane lipids. Surprisingly, studies using 18:1-OH showed that microsomes from plants that do not produce this fatty acid also had phospholipase activity specific for 18:1-OH (Ref. 4). These observations suggest that micromolar PLA₂ might have a general role in releasing membrane-incompatible fatty acids from PtdCho to protect the integrity of the membrane. PLA₂ have been postulated to have a similar function in animal cells by removing oxygenated fatty acids from membrane lipids. Nevertheless, it has been argued that phospholipase activity is the primary mechanism by which plants with unusual fatty acids censor their membrane pool. In the metabolism of some unusual fatty acids, such as 18:1Δ6, reliance on phospholipases would set up a futile cycle. These unusual fatty acids are esterified onto lipids from the acyl-CoA pool, and their release from PtdCho by phospholipases (followed by re-esterification to CoA) would return them to the same acyl-CoA pool (Fig. 2). Thus, phospholipases might well have a role in removing unusual fatty acids from cellular membranes, but are probably of lesser importance in directing them to triacylglycerols.

Transacylation reactions

Observations made over several years have suggested that, in addition to the glycerol-3-phosphate pathway for the synthesis and acyl remodeling of triacylglycerols, 16,26,29 although the true role of transacylation enzymes in storage lipid biosynthesis remains uncertain, recent experiments indicate that transacylation might be an important mechanism for efficiently channeling unusual fatty acids out of membrane lipids into triacylglycerols. In castor bean, for example, an enzyme designated phospholipid diacylglycerol acyltransferase (PDAT) has been described. This activity appears to be responsible for the transfer of 18:1-OH from the sn-2 position of PtdCho to diacylglycerol to produce lysophosphatidylcholine (lyso-PtdCho) and triacylglycerol (Ref. 30; A. Dahlqvist, pers. commun.; Fig. 2). Transfer of 18:1 by PDAT has provided evidence that the localization of enzymes involved in storage lipid biosynthesis continues to be an area of active research. In other words, the acyl-CoA pool has been somewhat surprising and have given new insights into the regulation of lipid metabolism.

Compartimentation of triacylglycerol biosynthesis

It has been assumed that the specificities of the enzymes of lipid metabolism are not discriminating enough to account for the strong bias between membrane and storage lipids. As an alternative, it has been proposed that membrane lipid and triacylglycerol assembly might be carried out by distinct subsets of enzymes located in separate domains of the endoplasmic reticulum (ER)(26,28,29). Subcellular fractionation of developing oilseed rape (Brassica napus) has provided evidence that localization of enzymes involved in triacylglycerol biosynthesis is not precisely coincident with enzymes involved in membrane lipid biosynthesis in the ER (Ref. 31). In addition, analysis of petroselinic acid accumulation in coriander using 13C-labeling of developing seeds has suggested that there might be a distinct pool of PtdCho dedicated to triacylglycerol assembly in this plant.4 However, the evidence to support the compartmentation hypothesis is limited and further experiments are needed. Comparing immunolocalization of enzymes involved in storage lipid biosynthesis (e.g. DAGAT) with enzymes involved in membrane lipid biosynthesis might help to resolve this question.

Production of unusual fatty acids in transgenic crop plants

Although plants have evolved mechanisms to correctly target the unusual fatty acid that they accumulate, will the same be true when foreign fatty acids are introduced into transgenic plants? The best-studied example to date is the laurate-producing rape (Calgene®), in which a California bay tree (Umbellularia californica) medium-chain fatty acid thiosterase (FatB1) was expressed using the seed-specific Nippon promoter. In some of these Nippon-FatB1 lines, 12:0 accumulated to >5 mol% of the seed triacylglycerols. By contrast, only 6 mol% 12:0 was found in PtdCho of the membrane lipids of mature seeds, suggesting that 12:0 was correctly targeted in these transgenic plants. However, in developing oilseed rape during rapid triacylglycerol deposition, 12:0 levels could sometimes reach up to 50 mol% of the fatty acids in PtdCho (Ref. 5). By contrast, in species naturally accumulating 12:0, the levels were only between 1 and 4 mol% (Ref. 32). Thus, 12:0-targeting appears less effective in oilseed rape than in plants naturally evolved to synthesize 12:0-rich oils. This implies that if transgenic rape plants are to accumulate >90% of 12:0 in their seed oil, it might also be necessary to engineer the pathways to exclude unusual fatty acids from the membranes. Otherwise, the seed membrane levels of 12:0 would be much higher than in plants naturally evolved to synthesize 12:0-rich oils.

Exclusion of unusual fatty acids from leaf membranes

We have mainly focussed on how unusual fatty acids are excluded from the membrane lipids of the seed, because this is where they occur in nature. However, the use of transgenic plants allows us to create unique situations in plant cells. Recently, seed-specific enzymes responsible for the synthesis of medium-chain, hydroxy and very-long-chain fatty acids have all been expressed in the vegetative tissues of plants. The results of these experiments have been somewhat surprising and have given new insights into the regulation of lipid metabolism.

When the medium-chain fatty acid thiosterase gene, FatB1, is expressed in oilseed rape under the control of the 35S promoter, some of the 35S-FatB1 transgenic lines accumulate high levels of MCFAs in the seed triacylglycerols. However, the MCFAs are absent completely from all other parts of these plants, even though higher levels of FatB1 activity are present in the vegetative tissues. This is an interesting observation and one that provides new insights into the regulation of lipid metabolism.

Reviews

The medium-chain fatty acid thiosterase gene, FatB1, is expressed in oilseed rape under the control of the 35S promoter, some of the 35S-FatB1 transgenic lines accumulate high levels of MCFAs in the seed triacylglycerols. However, the MCFAs are absent completely from all other parts of these plants, even though higher levels of FatB1 activity are present in the vegetative tissues. This is an interesting observation and one that provides new insights into the regulation of lipid metabolism.

When the medium-chain fatty acid thiosterase gene, FatB1, is expressed in oilseed rape under the control of the 35S promoter, some of the 35S-FatB1 transgenic lines accumulate high levels of MCFAs in the seed triacylglycerols. However, the MCFAs are absent completely from all other parts of these plants, even though higher levels of FatB1 activity are present in the vegetative tissues. This is an interesting observation and one that provides new insights into the regulation of lipid metabolism.

When the medium-chain fatty acid thiosterase gene, FatB1, is expressed in oilseed rape under the control of the 35S promoter, some of the 35S-FatB1 transgenic lines accumulate high levels of MCFAs in the seed triacylglycerols. However, the MCFAs are absent completely from all other parts of these plants, even though higher levels of FatB1 activity are present in the vegetative tissues. This is an interesting observation and one that provides new insights into the regulation of lipid metabolism.
triacylglycerols, but is not present anywhere else in the plants. RNA blot analysis has revealed that the FAH12 transcript is present at high levels in non-seed tissues, and in vitro assays have demonstrated hydroxylase activity in roots and leaves. The failure of MCFA and hydroxy fatty acids to accumulate in non-seed tissues is further evidence that mechanisms exist in plant cells that can deal with fatty acids, which are incompatible with membrane structure and function.

The accumulation of VLCFAs in membrane lipids

By contrast with 35S-FatB1 and 35S-FAH12 transgenic plants, 35S promoter-directed ectopic expression of FATTY ACID ELONGATION 1 (FAE1), a gene encoding a VLCFA-condensing enzyme required for the synthesis of C20 and C22 seed oil constituents in Arabidopsis, resulted in plants accumulating high levels of unusual fatty acids in membrane lipids. VLCFAs were incorporated into all major membrane lipid classes, and in some 35S-FAE1 transgenic lines accumulated to >80% of the total leaf fatty acid, thus completely changing the basic fatty acid makeup of the plant. This result suggests that the plant does not perceive VLCFAs as unusual and that mechanisms that exclude medium-chain and hydroxy fatty acids from leaf membrane lipids do not operate on VLCFAs. However, such mechanisms must be present in the seed because VLCFAs are not found in membranes of developing embryos.

Those 35S-FAE1 plants with low levels of VLCFAs appear wild type in all respects. By contrast, plants with high levels of VLCFA content in their membrane glycerolipids undergo a dramatic morphological transformation (Fig. 3), with the transgene causing abnormalities both at the whole plant and subcellular levels. The severity of the observed morphological changes is correlated tightly with the levels of VLCFAs, with extreme levels of VLCFAs resulting in lethality.

It is puzzling why VLCFAs can accumulate in leaf lipids when other unusual fatty acids cannot. The simplest explanation is that VLCFAs have a role to play in the membrane bilayer. Indeed, C24–C26 VLCFAs are found in sphingolipids. These lipids are structurally distinct from glycerolipids and are thought to be present in the plasma membrane of most, if not all, eukaryotic cells. There is evidence suggesting that VLCFAs are required for the formation of highly curved membrane structures. The fact that the 35S-FAE1 plants have curved thylakoid membranes supports this notion, and suggests that thylakoid membrane lipids containing VLCFAs might be mimicking the structural role of sphingolipids. This is possible in view of a report that yeast cells can survive without sphingolipids by producing new structurally similar glycerolipids containing C26 fatty acids. In conclusion, hyperaccumulation of VLCFAs in membrane lipids in the 35S-FAE1 plants appears to perturb the structure of cellular membranes, which results in pleiotropic effects on plant growth and development.

The striking outcome of the 35S-FAE1 transgenic experiment described here indicates just how inadequate our understanding is of the exact relationship between fatty acid composition of membrane lipids and membrane structure and function.

Future prospects

Because of their unique chemical properties, many of the unusual fatty acids described here have important industrial applications. For these fatty acids to be economically attractive, conventional oilseed crops will have to be genetically engineered to produce oils with a single predominant unusual fatty acid. The existence of wild species, such as castor, which contains oil with 80–90% 18:1-OH, suggests that this is a feasible goal. However, the inability to specifically target unusual fatty acids to seed triacylglycerols, and their excessive accumulation in membrane lipids, might disrupt seed membrane integrity and impair seed development.
or germination. Initial results indicate that this might not be a problem in crop species that produce moderate quantities of unusual fatty acids in their seeds. However, as transgenic plants are generated that can produce higher levels of unusual fatty acids, it might be necessary to introduce additional enzymes, such as acyltransferases and phospholipases, into plants to achieve correct targeting or exclusion of unusual fatty acids from cell membranes and to obtain viable transgenic seeds. We believe that this topic is of great importance and will be fundamental for our ability to create new oil-crop species with the desired oil composition.

Acknowledgements

We thank Tanya Hooker for critical reading of the manuscript and for her help with the figures. Our work was supported by a Natural Sciences and Engineering Research Council of Canada grant to L.K.

References

6 Voorde, T.A. et al. (1992) Fatty acid biosynthesis reduced to medium chain in transgenic oilseed plants. Science 257, 72–74
9 Lazz, M. et al. (1998) Identification of non-home domain proteins that catalyze triad in oleic and 1,2-acyltransferase group formation. Science 280, 915–918
11 Millar, A.A. and Kunst, L. (1997) Very-long-chain fatty acid biosynthesis is controlled through the expression and specificity of the converting enzyme. Plant J. 12, 121–131
18 Frentzen, M. (1996) Acyltransferases from basic science to modified oilseeds. J. Food Lipids 100, 161–186
22 Wiberg, E. et al. (1996) Substrates of diacylglycerol acyltransferase in microsomes from developing oil seeds. Phytochemistry 36, 373–377
33 Luster, L.R. et al. (1995) Mutant strain of Saccharomyces cerevisiae lacking sphingolipid synthesis novo inositol glycerophospholipids that mimic sphingolipid structures. J. Biol. Chem. 266, 845–855