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Abstract

Corals (Cnidaria; Anthozoa) play critical roles as habitat-forming species with a wide range, from warm shallow-water tropical coral reefs
to cold-water ecosystems. They also represent a complex ecosystem as intricate holobionts made up of microbes from all domains of
the Tree of Life that can play significant roles in host health and fitness. The corallicolids are a clade of apicomplexans that infect a wide
variety of anthozoans worldwide and can influence the thermal tolerance of habitat-forming corals. Despite their potentially important
impacts on reef ecosystems, much of the basic biology and ecology of corallicolids remains unclear. Apicomplexans often have a closed
life cycle, with minimal environmental exposure and sometimes multiple hosts. Corallicolids have only been documented in anthozoan
hosts, with no known secondary/reservoir hosts or vectors. Here, we show that abundant corallicolid sequences are recovered from
bearded fireworms (Hermodice carunculata) in tropical reef habitats off Curaçao and that they are distinct from corallicolids infecting
the corals on which the fireworms were feeding at the time of their collection. These data are consistent with a fireworm-specific
corallicolid infection, not merely a byproduct of the worms feeding on infected corals. Furthermore, we suggest that H. carunculata is
potentially a vector moving corallicolids among coral hosts through its feces. These findings not only expand our understanding of the
ecological interactions within coral reef ecosystems but also highlight the potential role of host-associated parasites in shaping the
resilience of reef habitats.
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Introduction
Multiple Hermodice carunculata individuals were observed feeding
on the diseased tissue (black band disease) of the boulder star
coral, Orbicella annularis, at Playa Lagun in western Curaçao
(Supplementary Fig. 1). Triplicate samples were taken from
the following: three individual worms, coral tissues from a
disease transect of O. annularis (apparently healthy tissue,
diseased transition line tissue, and subsequent dead tissue;
Supplementary Fig. 1), a proximally adjacent healthy O. annularis
individual, three fireworms taken from around a healthy Millepora
sp. colony on a different reef near Piscadera in central Curaçao,
and individual water samples from both sampling locations
(taken at sampling depth, 1 L water filtered through a 0.2 μm
filter). Samples were stored in Zymo DNA/RNA shield first at room
temperature during travel then at −20◦C in the lab before being
extracted with the Zymobiomics DNA/RNA Miniprep kit (Cata-
logue R2002). DNA extracts were PCR-amplified for the V4 regions
of 18S rRNA and 16S rRNA genes using established protocols to

investigate the eukaryotic nuclear and plastid gene abundances,
respectively [1, 2]. For this purpose, the 16S rRNA gene dataset
was filtered to include only plastid amplicon sequence variants
(ASVs). Corallicolids [3, 4], specifically Anthozoaphila spp., were
found to be the primary microeukaryote recovered from H.
carunculata, often making up over 50% of the reads (Fig. 1A).
Conversely, corals were primarily dominated by Symbiodiniaceae,
which gradually decreased in abundance across the disease
transect (towards dead tissue). Corallicolids, even though they
still make up a portion of the microeukaryotic community, were
not detected in high abundance across the sampled corals nor in
the water in which they were found (Fig. 1A).

The primary corallicolid ASVs from all samples were placed
using RAxML’s Evolutionary Placement Algorithm (EPA) [5] onto
an rrn operon (18S + 28S rRNA genes) backbone reference tree
to investigate the relatedness of recovered sequences. The
predominant corallicolid ASVs from H. carunculata were found
to branch with Anthozoaphila gnarlus, distinctly distant from
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Figure 1. 18S rRNA gene amplicon sequencing. (A) Relative abundance bubble plot of 18S rRNA genes across O. annularis, H. carunculata, and water
samples. Bubble shading corresponds to the standard deviation of the samples within each category. The dashed gray box indicates the coral and
worm samples taken from the same coral colony in Playa Lagun, Curaçao, in October 2022. The sample number per category is represented by “n”.
(B) ASVs classified as corallicolids were EPA-placed onto a backbone 18S–28S rrn operon tree of Corallicolida. Tree scale is 0.25. Ichthyocolids were used
as the outgroup. The relative abundance of each ASV is shown in the heat-map across the same sample categories from panel A.

sequences acquired from the coral on which they were feeding:
the coral-derived corallicolids branched with a clade previously
recovered from another O. annularis (Fig. 1B). The recovery of
distinct A. gnarlus-related ASVs from multiple H. carunculata
individuals from multiple locations is notable, as is the absence
of corallicolid reads in H. carunculata that match those of the
disease lesion of the O. annularis colony where the worms were
feeding. Although corallicolids comprised a tiny portion of the
microeukaryotic community in water samples, the predominant
corallicolid ASV was again distinct from both the coral and
fireworm-associated clades, branching with Corallicolidae COR1
(Fig. 1B).

To better compare our results with other datasets, the
plastid 16S rRNA gene was also acquired, as it is a much more
common molecular marker in environmental surveys. These data
confirmed the high abundance of corallicolids in all H. carunculata
samples based on plastid 16S rRNA gene abundance (42.1 ± 1.65%
in Orbicella & 46.7 ± 13.2% in Millepora; Fig. 2A). We also again
recovered different dominant plastid ASVs for coral, fireworms,
and water, respectively. All corallicolid ASVs branch together on
an EPA-placement tree of previously recovered corallicolid plastid
16S rRNA genes (Fig. 2B), unlike the corallicolid nuclear 18S rRNA

genes (Fig. 1B). This may be explained by the substitution rate of
18S rRNA gene being much higher than that of the 16S rRNA gene,
and the plastid gene accordingly failing to resolve closely related
lineages.

To examine the tissue specificity in H. carunculata, we analyzed
16S rRNA genes from whole worms and from multiple tissues
(prostomium, pharynx, gut, and feces) in dissected H. carunculata
from Curaçao in 2018. Corallicolid plastid 16S rRNA genes were
also abundant in the whole worms and the gut and feces but
absent in other tissues (Fig. 2C).

The data presented here provides the first evidence for a
non-anthozoan host of corallicolids. Indeed, the abundance of
corallicolids within H. carunculata is high compared to the coral
specimen. These data also lead to questions of whether H. carun-
culata is infected with a distinct subtype of corallicolid or whether
the lifecycle of coral-infecting corallicolids may include other
hosts, such as H. carunculata. Corallicolids are related to coccidians
[6], and many coccidians alternate between sexual reproduction
within a primary host and asexual reproduction in a secondary
host. The closest sister group to corallicolids is the ichthyocolids,
which are blood parasites of marine fishes that are obligately
transmitted by gnathiid vectors [7, 8]. It is altogether not unlikely,
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Figure 2. Plastid 16S rRNA gene amplicon sequencing. (A) Relative abundance bubble plot of plastid 16S rRNA genes across O. annularis, H.
carunculata, and water samples. Bubble shading corresponds to the standard deviation of the samples within each category. The dashed gray box
indicates the coral and worm samples taken from the same coral colony in Playa Lagun, Curaçao, in October 2022. The sample number per category is
represented by “n”. (B) Plastid 16S rRNA gene ASVs confirmed as corallicolids were EPA-placed onto a backbone 16S rRNA gene tree of Apicomplexa
(only the corallicolid portion is shown). Tree scale is 0.04. The relative abundance of each plastid ASV is shown in the heat-map across the same
sample categories from panel A. (C) Relative abundance bubble plot of plastid 16S rRNA genes across fire worm sampling sites, indicating the presence
of corallicolid ASVs in the whole worm, gut, and feces samples. The sample number per category is represented by “n”. (D) Diagram of H. carunculata
sampling strategy. Close-up images courtesy of Gabriel Jensen and Candace Grimes.

therefore, that corallicolids also have a life cycle that alternates
between hosts. Fireworms may play a key role in the potentially
complex life cycle of corallicolids, but further research is needed
to clarify the different life stages in fireworms and coral.

Since the dominant corallicolids recovered from the diseased
coral were distinct from those of the fireworms actively feeding
on the coral, we can conclude that the corallicolids within the
fireworms did not originate from that feeding. Therefore, the
Anthozoaphila spp. from the fireworms may have either originated

from a prior coral host with which the fireworm has interacted
or represent a corallicolid lineage with an especially wide host
range, including both corals and fireworms. In the first case, we
see that the Anthozoaphila spp. within the fireworms are highly
abundant within the worms at the time of sampling and are
therefore capable of being vectorized to a coral not yet highly
infected with this lineage.

These data suggest corallicolid transmission may be a complex
mix of several factors, potentially different in different parasite
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lineages. For example, brooding coral species have been proposed
to transmit corallicolids vertically [9]. Still, another transmission
mode is required to explain infection in broadcast-spawning coral
species, such as Orbicella spp. Fireworms as a vector might fill this
gap, as they are common generalist corallivores in tropical reef
ecosystems [10], and a fecal-oral transmission mode is consistent
with the data. How dynamic this picture might be is exemplified
when one also considers that fireworms are invasive in some
regions, like the Mediterranean Sea [11]. Also, fireworms have the
potential to expand to other ocean regions, such as the Indo-
Pacific through the Suez Canal, as a result of the climate crisis
and the tropicalization of the Mediterranean Sea [12], so their role
as vectors could impact the health of reefs in these regions [13,
14]. And if fireworms are indeed vectors, they cannot be the only
species in this role because corallicolids are found in Anthozoans
from the deep sea and northern latitudes [15, 16], both outside
the range of H. carunculata [17], so other, un-explored vectors may
operate in these ecosystems. To confirm fireworms or any other
organism as a corallicolid vector, future research should investi-
gate whether corallicolids can tolerate passage through the vector
and be effectively taken up by a coral. Future research should
also focus on isolating and sequencing the corallicolids from H.
carunculata to clarify their association with this host and to expand
the search to other potential non-anthozoan hosts to clarify their
ecological link to infected anthozoans. Understanding corallicolid
ecology in the anthozoan holobiont is critical to uncovering these
parasites’ influence in the unprecedented environmental changes
these ecosystems are experiencing.
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