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Abstract 
Free-living core dinoflagellates are commonly infected by members of two parasitic clades that are themselves closely related to 
dinoflagellates, the marine alveolates and perkinsids. These parasites are abundant and ecologically important, but most species have 
been difficult to observe directly or cultivate, so our knowledge of them is usually restricted to environmental 18S rRNA gene sequences, 
as genome-scale molecular data are not available for most species. Here, we report the finding of several of these parasites infecting 
free-living dinoflagellates. Of the 14 infected host cells collected, only five were identified as containing parasites via light microscopy 
at the time of collection. Single-cell transcriptome sequencing yielded relatively high transcriptomic coverage for parasites as well as 
their hosts. Host and parasite homologs were distinguished phylogenetically, allowing us to infer a robust phylogenomic tree based 
on 192 genes. The tree showed one parasite belongs to an undescribed lineage that is sister to perkinsids, whereas the remainder 
are members of the syndinian clade within the marine alveolates. Close relatives of all these parasites have been observed in 18S 
rRNA gene surveys, but until now none had been linked to a specific host. These findings illustrate the efficacy of single-cell isolation 
and transcriptome sequencing as strategies for gaining deeper insights into the evolutionary history and host relationships of hidden 
single-celled parasites. 
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Introduction 
In dinoflagellates and close relatives, parasitism has arisen mul-
tiple times, resulting in many independent lineages that infect 
diverse protist and metazoan hosts [1]. While parasitic dinoflag-
ellates have long been documented [2], it was not until the use 
of environmental 18S rRNA gene sequencing that their depth of 
diversity and potential ecological impact became clear: not only 
are these parasites globally distributed, but in the oceans they 
account for several of the most abundant eukaryotic lineages 
known [3, 4]. 

Phylogenies have revealed that one important parasitic group, 
the marine alveolates (MALVs), is composed of at least five distinct 
subgroups [5] that cluster into two major lineages: MALVs II and 
IV (the Syndiniales, or “syndinians”), and MALVs I, III, and V 
[1]. Despite accounting for up to 50% of eukaryotic sequences 
in environmental samples and being thought to be the domi-
nant parasitic group within the picoplanktonic size fraction [6– 
9], visual observations of most MALV species are scant or non-
existent, as they are likely tiny in their free-living stages and 
difficult to detect when inside a host. Another major subgroup 
of parasites branching sister to dinoflagellates, the perkinsids, 
are less abundant in environmental samples but more widely 
distributed, as they are also common in terrestrial and freshwater 
ecosystems [10, 11]. 

Both MALVs and perkinsids infect a wide variety of host ani-
mals and protists, including the closely related core dinoflagel-
lates [12–14]. In particular, Amoebophrya and other members of 
the syndinian MALV II clade [5] infect many free-living dinoflag-
ellates, including toxic species, contributing so significantly to 
bloom depletion that they surpass zooplankton grazers in some 
cases [15, 16]. For this reason, Amoebophrya is relatively well 
studied, but little is known about host-specificity or the diversity 
of its hosts, because most dinoflagellates are not in culture and 
early stages of infection are not always visible in cells observed in 
the field. 

While conducting a large single-cell transcriptome sequenc-
ing survey to investigate the molecular diversity of uncultured 
marine dinoflagellates, we discovered that a subset of the cells 
we collected (14 in total out of 168 cells analyzed) were infected 
by syndinian MALV IIs or perkinsids (Table S1). Hosts were a 
range of core dinoflagellates, including photosynthetic and het-
erotrophic species, as well as thecate and athecate species. Unin-
fected individuals of most host species were also collected, or 
in a few cases already had transcriptome data available, giving 
us paired infected/uninfected datasets. We performed a multi-
protein phylogenomic analysis on all cells by searching for 263 
conserved genes in each transcriptome (Table S2) and generating 
trees for all genes [17]. For each gene, host and parasite orthologs 
(and contamination) were differentiated based on phylogenetic
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Figure 1. Maximum likelihood phylogenomic tree of parasites and their core dinoflagellate hosts. The primary model used to generate this tree from 
192 conserved gene alignments is shown with a scale bar representing the estimated number of amino acid substitutions per site. Node numbers 
indicate bootstrap values ([LG + C60 + F + G4 − bb 1000]/[LG + C60 + F + G4 PMSF −b 100]); black dots signify 100 for both analyses. Transcriptomes 
introduced in this study are highlighted in black. Host and parasite pairs are connected by colored lines. Cells in light micrographs are all depicted at 
the same scale; scale bar = 25 μm. For cells with infections that were identifiable at the time of collection, parasites are indicated by asterisks. 

D
ow

nloaded from
 https://academ

ic.oup.com
/ism

ej/article/18/1/w
rae188/7777698 by guest on 23 O

ctober 2024



Hidden parasites of dinoflagellates | 3

Figure 2. Maximum likelihood phylogeny inferred from 18S rRNA gene sequences showing the diversity of syndinian MALV II and perkinsid parasites. 
The model used to infer the tree and the scale bar representing the estimated number of nucleotide substitutions per site are shown next to each 
clade. Node numbers indicate bootstrap values, with black dots signifying 100. Taxa introduced in this study are highlighted in black. Broken branches 
are depicted at half their original length. 

affinities to closely related species included in the alignments. 
This approach allowed us to resolve the phylogenomic position 
of parasites independent of their hosts. For further details of this 
methodology, see Supplementary Methods. 

The multi-gene phylogeny revealed that all but one parasite 
clustered with the monophyletic MALV II clade within the syndini-
ans, with the single exception being an infection of Amphidinium 
sp. that branched sister to the clade containing Maranthos, Parvilu-
cifera, and  Perkinsus (Fig. 1). In the same tree, hosts cluster closely 

with members of the same species, with the exception of KreQI, 
for which transcriptomes of the same species are not available. 
For two cells (PhaFC3, UnkQI), host transcripts were very sparse 
and were thus omitted from this analysis. We also tested these 
relationships using a phylogeny of 18S rRNA gene sequences, 
which allows for a much more diverse collection of both cultured 
and environmentally derived sequences from many more lineages 
of early-diverging dinoflagellates, including all MALV groups and 
perkinsids (Fig. 2).
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The 18S rRNA gene phylogeny revealed that the perkinsid 
relative did not share a close phylogenetic affinity with any cur-
rently classified group within the perkinsid clade (i.e. Perkinsus, 
parviluciferans, and  Xcellidae). Instead, it grouped with a clade of 
environmental sequences branching outside the known perkin-
sids and was most closely related to sequences retrieved from 
benthic environments [1]. At the time of collection, there was no 
visual indication that the marine Amphidinium sp. host cell was 
infected, other than a red-pigmented area in the center, which 
has not been observed in non-infected cells of the same species 
[18]. This ambiguity and the paucity of highly similar sequences in 
environmental sampling suggest this species is rare and unlikely 
to be found without extensive molecular screening of potential 
host species. 

All other parasites were confirmed to belong to the syndinian 
MALV II clade in the 18S rRNA gene phylogeny (Fig. 2). This also 
suggests that most of these parasites belong to the genus Amoe-
bophrya, because they all branch with clades designated as such; 
however, the two identical parasites found to infect Akashiwo san-
guinea branched outside the well-annotated Amoebophrya clade, so 
we refer to them simply as “MALV II.” These cells fell within a clade 
of environmental sequences, all of which lacked information 
about their potential hosts. A. sanguinea has already been shown 
to be infected by an Amoebophrya species that is genetically dis-
tinct (Fig. 2; [19]), so this is the second member of the MALV II clade 
now confirmed to infect this host. The 18S rRNA gene sequences 
of most Amoebophrya sp. collected here shared phylogenetic affini-
ties with existing sequences of parasites infecting closely related 
hosts. Those infecting Cyklopsia, Erythropsidinium, and Polykrikos, all  
unarmored cells belonging to the order Gymnodiniales, branched 
adjacent to one another. 

Infections by perkinsids and syndinians that have been studied 
in any detail lead to host cell death, often relatively quickly. Some 
of these parasites are easily found due to identifiable signs of 
infection (e.g. the beehive stage of MALV II or the germ tube 
in some perkinsids [20]), but for undescribed species of these 
groups, it is unknown whether we can distinguish infected from 
uninfected hosts in live samples, as even well-known parasites are 
nearly invisible during most life stages. Although approaches like 
environmental sample incubation have proven effective for grow-
ing and observing different life stages of some parasite species, 
these methods are likely not viable for much of their diversity, 
since many host species, including some in this study, perish 
hours after collection. 

The assemblage of parasites we present here, many of them 
hidden, demonstrates the efficacy of single-cell isolation and 
transcriptome sequencing for gaining molecular insights into 
diverse, uncultured parasites. Although extricating host and par-
asite transcriptomes can pose a challenge, this method generates 
a depth of genetic information for parasitic single-celled eukary-
otes that can be parsed for robust phylogenomic and functional 
analysis, unambiguously linking parasites to a host species, and 
does not require a priori knowledge of the host–parasite interac-
tion. These are all valuable criteria to better understand a major 
ecological dynamic that is very difficult to study in the absence of 
cultured systems. 
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