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SUMMARY

The apicomplexans are a group of obligate animal
pathogens that include Plasmodium (malaria), Toxo-
plasma (toxoplasmosis), andCryptosporidium (cryp-
tosporidiosis) [1]. They are an extremely diverse
and specious group but are nevertheless united
by a distinctive suite of cytoskeletal and secretory
structures related to infection, called the apical
complex, which is used to recognize and gain entry
into animal host cells. The apicomplexans are also
known to have evolved from free-living photo-
synthetic ancestors and retain a relict plastid (the
apicoplast), which is non-photosynthetic but houses
a number of other essential metabolic pathways [2].
Their closest relatives include a mix of both photo-
synthetic algae (chromerids) and non-photosynthetic
microbial predators (colpodellids) [3]. Genomic ana-
lyses of these free-living relatives have revealed a
great deal about how the alga-parasite transition
may have taken place, as well as origins of para-
sitismmore generally [4]. Here, we show that, despite
the surprisingly complex origin of apicomplexans
from algae, this transition actually occurred at least
three times independently. Using single-cell geno-
mics and transcriptomics from diverse uncultivated
parasites, we find that two genera previously classi-
fied within the Apicomplexa, Piridium and Platypro-
teum, form separately branching lineages in phyloge-
nomic analyses. Both retain cryptic plastids with
genomic and metabolic features convergent with
apicomplexans. These findings suggest a predilec-
tion in this lineage for both the convergent loss of
photosynthesis and transition to parasitism, result-
ing in multiple lineages of superficially similar animal
parasites.
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RESULTS AND DISCUSSION

To gain a deeper understanding of the origin of parasitism in api-

complexans, we used single-cell sequencing to characterize the

genomes and transcriptomes from a number of uncultivated par-

asites representing poorly studied lineages of apicomplexans.

Specifically, we generated transcriptome data from individual

trophozoite cells of the gregarine apicomplexans Monocystis

agilis, Lecudina tuzetae, Pterospora schizosoma, Heliospora

capraellae, and Platyproteum sp., using single cells documented

microscopically and manually isolated directly from their animal

hosts (Figures 1A–1E). In addition, we generated both genomic

and transcriptomic data from gamogonic stages of Piridium

sociabile, an apicomplexan isolated from the foot tissue cells

of the common marine whelk, Buccinum undatum (Figure 1F).

These gregarines represent subgroups of both marine (Ptero-

spora, Heliospora, Lecudina, and Platyproteum) and terrestrial

(Monocystis) parasites, and the limited available molecular

data (from small subunit [SSU] rRNA) are divergent but generally

show them to be diverse, early branching apicomplexans [5–8]

(Figure S1). Platyproteum was the most recently described by

detailed microscopy and molecular phylogenetic analyses using

SSU rDNA sequences; these data suggest that it is a particularly

deep-branching apicomplexan [9, 10]. Piridium sociabile is even

more poorly studied: found in 1932 as an intracellular infection

and was morphologically classified as a schizogregarine [11].

The relationships of these six taxa to the Apicomplexa were

examined by phylogenomics using a concatenated alignment

of 39 taxa and 189 nucleus-encoded proteins that have been

previously used in in both eukaryote-wide and phylum-level

phylogenies [12, 13]. Their positions in the resulting tree are

strongly and consistently resolved by both maximum likelihood

(C40+LG+G4+F model) and Bayesian (CAT-GTR) analyses (Fig-

ure 1G). Surprisingly, the phylogeny shows that neither Piridium

nor Platyproteum branch within the Apicomplexa. Instead,

Piridium branches within the sister group to the Apicomplexa,

the ‘‘chrompodellids’’ (chromerids + colpodellids), with com-

plete support as sister to the photosynthetic alga Vitrella brassi-

caformis. Platyproteum forms a new lineage, also with complete
vier Ltd.
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Figure 1. Phylogenomic Tree of the Apicomplexa and Relatives

(A–E) Light micrographs of single-cell trophozoites are of (A) H. caprellae, (B) L. tuzatae, (C) M. agilis, (D) P. schizosoma, and (E) Platyproteum sp. (scale bars

represent 50 mm).

(F) Light micrograph of a single-cell gamont of P. sociabile (scale bar represents 15 mm).

(G) Maximum likelihood tree generated from an alignment comprising 198 genes and 58,116 sites under the C40+LG+G4+F substitution model with both non-

parametric bootstraps (n = 500) and posterior probabilities (PPs) shown. Black circles represent 100% bootstrap support and 1.0 Bayesian PP, and all other

support values are indicated beside the node. New transcriptomes are shown in bold lettering. The percentage of genes present in the phylogeny for each taxon is

shown on the left and is shaded in black for newly sequenced transcriptomes. On the right are characters corresponding to each taxon.

See also Figures S1 and S3.
support, sister to the clade consisting of apicomplexans and

chrompodellids collectively. The four more canonical gregarines

(Monocystis, Lecudina, Pterospora, and Heliospora) formed a

monophyletic group of deep-branching apicomplexans that

interestingly excludes Cryptosporidium. This robust phylogeny

not only confirms that photosynthesis was lost multiple times

independently around the origin of the Apicomplexa but more

surprisingly shows that the highly derived mode of animal para-

sitism that is characteristic of the Apicomplexa also arose multi-

ple times independently.

To further investigate the convergent evolution of parasitic life-

styles in Piridium and Platyproteum, we examined plastid reten-

tion and function, a well-studied trait of the Apicomplexa [2, 3].

With both genomic and transcriptomic data from Piridium, we

first assembled its complete plastid genome (Figures 2A and

S2), which is strikingly similar in size, architecture, and gene con-

tent to apicoplast genomes (Figure 2B). The Piridium plastid

genome is a highly reduced compact circle (�34 kb) with all re-

maining genes in perfect synteny with homologs in its closest

relative, the photosynthetic Vitrella. Similar to the apicoplast, it

is extremely AT rich (21% G+C content) and uses a non-canon-

ical genetic code where UGA encodes tryptophan (as seen in

Chromera, Toxoplasma, and corallicolids, but not in the more

closely related Vitrella) [14, 15]. It retains similar ribosomal genes

as well as the same bacterial RNA polymerases (rpoB, rpoC1,
and rpoC2) and other protein-coding genes (sufA, clpC, and

tufA) as apicoplasts. It has also convergently lost all genes

relating to photosynthesis, as well as rps18, rpl13, rpl27, secA,

and secY (Figure 2C). Reflecting its origin from a chrompodellid

ancestor, the Piridium plastid also encodes a handful of genes

that are present in Vitrella but absent from apicoplasts: rps14;

rpl3; and rpoA. Curiously, only a partial rRNA inverted repeat

remains in Piridium; this repeat is ancestral to all apicomplexans

and chrompodellids but has also similarly been lost in the piro-

plasm apicomplexans, Babesia and Theileria [16, 17].

Apicomplexans depend on apicoplasts for essential biosyn-

thesis of four compounds: isoprenoids (the non-mevalonate

pathway); heme; iron-sulfur (Fe-S) clusters; and fatty acids (the

type II fatty acid pathway) [2]. All apicomplexans rely on these

pathways except piroplasms, which have lost the FASII and

heme pathway and use cytosolic FASI instead, and Cryptospo-

ridium, which can salvage the metabolites from its host and has

lost its plastid entirely [18, 19]. We identified all enzymes from

these pathways and all enzymes for analogous and homologous

cytosolic pathways using profile hidden Markov models (HMMs)

and analyzed the resulting genes for evidence of distinctive N-ter-

minal bipartite plastid-targeting peptides (Figure 2C; Table S1). It

is impossible to conclude that any single gene is absent based on

transcriptomic data alone, so only the absence of all genes

for entire biochemical pathways is considered here. The
Current Biology 29, 2936–2941, September 9, 2019 2937



Figure 2. Plastid Dependency in Piridium and Platyproteum Has Evolved Convergently to Apicomplexans

(A) Complete annotated plastid genome of P. sociabile.

(B) Presence of plastid biosynthetic pathways across the tree of apicomplexans and chrompodellids. Portions of the circles represent the proteins found in each

pathway found (key shown on right). Black circles indicate the presence of complete N-terminal bipartite plastid-targeting peptides (only shown for newly added

transcriptomes).

(C) Plastid gene content of apicomplexans and Vitrella (free-living, photosynthetic) compared to Piridium.

See also Table S1 and Figure S2.
dependency on plastidmetabolism inPiridium is identical tomost

apicomplexans, with the retention of all four pathways but no

photosystems or other known plastid functions. Platyproteum is

similar but has also lost the FASII pathway and so more resem-

bles the piroplasms [17, 18].

Interestingly, the same analysis on the clade of gregarines re-

vealed a greater degree of variation from other apicomplexans

than seen in the cryptic plastids that evolved in parallel (Fig-

ure 2B). Like Cryptosporidium, the terrestrial gregarines Mono-

cystis and Gregarina have completely lost all plastid metabolism

and likely also lost the organelle (which also suggests that the

phylogenetic relationship between Cryptosporidium and terres-

trial gregarines remains uncertain) [19, 20]. In contrast, however,

the marine gregarines Lecudina and Pterospora retain the com-

plete FASII pathway but no other identifiable plastid metabolism.

This is the first evidence of a plastid in any gregarine and is also

functionally curious, because it is isoprenoid biosynthesis that

has been proposed to be the main barrier to plastid loss [3].

The gregarines thus suggest that plastid dependency is highly

context dependent.
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Looking beyond the plastid, metabolic reconstructions based

on KEGG (Kyoto Encylopedia of Genes andGenomes) identifiers

across the whole genome confirm an overall convergence of

functional reduction but also some divergence (Figure 3). Both

Piridium and Platyproteum have, as expected, substantially

reduced their metabolic functions compared to their free-living

chrompodellid relatives. However, neither is as reduced as api-

complexan parasites. In both cases, a few core pathways, such

as the glyoxylate cycle and pyrimidine catabolism, have been re-

tained (Table S2). Of the two, Piridium contains the greatest

breadth of biosynthetic functions that were mostly lost in all

other parasitic groups, such as de novo amino acid biosynthesis

(isoleucine and arginine) and purine biosynthesis (inosine) and

degradation. Surprisingly, the gregarine Monocystis agilis has

also retained a greater metabolic capacity than other apicom-

plexans. Although its greater functional capacity relative to other

gregarines may be due to better sequencing coverage, the ma-

jority of other apicomplexans are reconstructed from whole ge-

nomes, suggesting that the baselinemetabolic complexity of the

group as a whole is greater than was previously thought.



Figure 3. The Distribution of Cellular Meta-

bolic Pathways across the Tree of Apicom-

plexans and Chrompodellids

The list of metabolic pathways is shown on the right.

Yellow represents presence, and shades of blue

indicate absence based on genomic data (dark blue)

or absence based on transcriptomic data (lighter

blue). Our newly sequenced transcriptomes are

shown in bold lettering. Estimated gains and losses

of genes (orthogroups) are shown on nodes and on

the branches leading to each species. The pie charts

show the percentage of genome or transcriptome

completeness based on BUSCO scores.

See also Table S2.
The origin of apicomplexan parasites from free-living photo-

synthetic alga represents a major evolutionary transition be-

tween two very different modes of living, so different in this

case that the ideawas originally met with skepticism. The current

data show that, however dramatic this transition may seem, it

was not unique but rather repeated at least three times in related

lineages of photosynthetic algae. The details of the parasitic

machinery in Piridium and Platyproteum are unknown, so how

detailed the convergence of their parasitic lifestyles may be will

require more information, but they superficially resemble api-

complexans to the extent that they were classified within the

groupwhen formally described. The genomic and transcriptomic

data presented here also suggest that the ancestors of these lin-

eages maintained high levels of redundancy in metabolic path-

ways between compartments that persisted over long periods

of evolutionary time and apparently shared some predilection

to animal parasitism. The underlying reason for this is not clear,

because the evolution of apicomplexan parasitism is not linked

to the acquisition of any novel feature or machinery but is instead

marked by loss and tinkering of the existing genomic repertoire.
STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d LEAD CONTACT AND MATERIALS AVAILABILITY

d EXPERIMENTAL MODEL AND SUBJECT DETAILS
d METHOD DETAILS

B Genomics and transcriptomics of Piridium sociabile

B Genome assembly and annotation of Piridium socia-

bile

B Transcriptomics of the gregarines and Platyproteum

B Transcriptome assembly and annotation of the grega-

rines and Platyproteum

B Ortholog identification, gene concatenation and phylo-

genomics

B Search and identification of plastid proteins

B Search for plastid localization signals

B Analysis of cellular metabolic pathways

B Ortholog identification and search for apicomplexan

invasion/extracellular proteins

d QUANTIFICATION AND STATISTICAL ANALYSIS

d DATA AND CODE AVAILABILITY

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.

cub.2019.07.019.

ACKNOWLEDGMENTS

We thank Maria Herranz, Niels van Steenkiste, Phil Angel, and the Hakai Insti-

tute for their assistance in sample collection. We also thank Filip Husnik for his

guidance with the transcriptomics and Waldan Kwong for his valuable feed-

back on themanuscript. This work was supported by grants from the Canadian

Institutes for Health Research (MOP-42517) to P.J.K. and HIR grant (UMC/

625/1/HIR/027) to M.A.F. from the University of Malaya, Kuala Lumpur. M.K.

was supported by a grant to the Centre for Microbial Diversity and Evolution
Current Biology 29, 2936–2941, September 9, 2019 2939

https://doi.org/10.1016/j.cub.2019.07.019
https://doi.org/10.1016/j.cub.2019.07.019


from the Tula Foundation, the ERD fund ‘‘Centre for Research of Pathogenicity

and Virulence of Parasites’’ (no. CZ.02.1.01/0.0/0.0/16_019/0000759), and

Fellowship Purkyne, Czech Acad. Sci. N.A.T.I. was supported by an NSERC

Canadian Graduate Scholarship.

AUTHOR CONTRIBUTIONS

V.M., M.K., and P.J.K. designed the study. V.M., Á.K., M.A.F., and B.S.L. ob-
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51. �Sev�cı́ková, T., Horák, A., Klime�s, V., Zbránková, V., Demir-Hilton, E.,
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Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Varsha

Mathur (varsha.mathur@botany.ubc.ca). This study did not generate new unique reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Monocystis agilis was isolated from the seminiferous vesicles of earthworms (Lumbricus terrestris), purchased from Berry’s Bait and

Tackle, Richmond, British Columbia, Canada in November 2017. Platyproteum sp. was isolated from the gut of a peanut worm

(Sipuncula) that was collected from Sint Joris Bay, Curaçao in April 2018. Lecudina tuzetae and Heliospora caprellae were isolated
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from the guts of the animals Platyneries bicanaliculata, and Caprella californica respectively. They were both collected at low tide

from Calvert Island, BC, Canada in June 2018. Pterospora schizosoma was isolated from the gut of a bamboo worm, Axiothella

rubrocincta, that was collected from Friday Harbour, Washington, USA in June 2018. All of these parasites were collected in the

trophozoite life stage (large feeding cells). Trophozoites were released into autoclaved filtered seawater by teasing apart the

intestines/seminal vesicles of the respective hosts with pointed forceps.

Piridium sociabile was isolated from the common whelk, Buccinum undatum, that was collected using dredges across Breidafjör-

dur, west coast of Iceland (65� 7.576’N; 22� 44.738’W). Whelks were sedated using 0.1% MgSO4 in seawater for 1-2 hours, then

examined for the presence ofPiridium cysts on the surface of the foot using a dissectionmicroscope.Mature (large) cysts were gently

squeezed with pointed forceps until the Piridium gamonts were released. The resulting exudate was collected into concave glass

spot plates containing filtered seawater and rinsed with autoclaved seawater three times to remove host tissues and mucous.

METHOD DETAILS

Genomics and transcriptomics of Piridium sociabile
DNA andRNA from the resulting gamonts was then extracted using aQIAGEN, Allprep DNA/RNAMini Kit (Cat. No. 80204). cDNAwas

synthesized using the SMARTseq2 protocol with seven cDNA amplification cycles [22]. RNA and DNA sequencing libraries were both

prepared using Illumina Nextera XT and Nextera protocol respectively, and sequenced using 2 3 300bp Illumina MiSeq (DNA) and

2x100bp Illumina HiSeq 2000 run (RNA). Both RNA and DNA reads were adaptor and quality trimmed with Trimommatic [23]. RNA

reads were further processed to remove low complexity regions using PRINTseq [25] and were assembled into transcripts using

Trinity v2.4 (with default settings) and translated into protein sequences using Transdecoder v.5 [24, 26].

Genome assembly and annotation of Piridium sociabile
The MIRA4 assembler was used to assemble the genomic DNA reads, which led to the assembly of single circular plastid genome

chromosome [27]. This assembly was validated by mapping of the reads back to the assembly by Bowtie2 [28]. The plastid genome

was then automatically annotated using MFAnnot (http://megasun.bch.umontreal.ca/cgi-bin/mfannot/mfannotInterface.pl) and

RNAweasel (http://megasun.bch.umontreal.ca/cgi-bin/RNAweasel/RNAweaselInterface.pl), followed by manual corrections in

Geneious v11.1.5 (https://www.geneious.com).

Transcriptomics of the gregarines and Platyproteum
The single-cell trophozoites were washed at least three times in autoclaved filtered seawater, or ultrapure water (forMonocystis) and

viewed and photographed under a Leica DMIL LED microscope equipped with a 40 3 objective and a Sony a6000 camera. Single

trophozoite cells were picked using a glass capillary micropipettes and transferred to a 0.2 mL thin-walled PCR tube containing 2 mL

of cell lysis buffer (0.2% Triton X-100 and RNase inhibitor (Invitrogen)). cDNA was synthetized from the single cell, or a pool of 2-3

cells, using the Smart-Seq2 protocol [22]. The cDNA concentration was quantified on a Qubit 2.0 Fluorometer (Thermo Fisher

Scientific Inc.).

Prior to high-throughput sequencing, 1mL of the final cDNA product was used as a template for a PCR amplification of the V4 region

of the 18S rRNA gene using Phusion High-Fidelity DNA Polymerase (New England Biolabs, Thermo Scientific) and the general

eukaryotic primer pair TAReuk454FWD1 and TAReukREV3 [21]. The PCR product was then sequenced by Sanger dideoxy

sequencing. The SSU rRNA gene sequences were used to confirm the identity of the newly collected organisms and avoid animal

host contamination using BLASTn to look for similar sequences in the non-redundant NCBI database [34]. Once the identity of

the parasite was confirmed, sequencing libraries were prepared using the Nextera XT protocol, and sequenced on a single lane

of Illumina MiSeq using 250 bp paired end reads.

Transcriptome assembly and annotation of the gregarines and Platyproteum
The raw Illumina sequencing reads were merged using PEAR v0.9.6, and FastQC was used to assess the quality of the paired reads

[32, 33]. The adaptor and primer sequences were trimmed using Trimmomatic v0.36 and the transcriptomes were assembled with

Trinity v2.4.0 [23, 24]. The contigs were then filtered for animal host contaminants using BlobTools in addition to blastn and blastx

searches against the NCBI nt database and the Swiss-Prot database, respectively [30, 34]. Coding sequences were predicted using

a combination of TransDecoder v3.0.1 and similarity searches against the Swiss-Prot database [26]. Assessment of the quality of the

assembly and annotation of the transcriptomes (including Piridium) was carried out using BUSCO [31].

Ortholog identification, gene concatenation and phylogenomics
In addition to our newly generated transcriptomes, the following transcriptomes and genomeswere downloaded from EuPathDB and

screened for orthologs; Hammondia hammondi, Sarcocystis neurona, Eimeria falciformis, and Gregarina niphandrodes [49]. All tran-

scriptomes were comprehensively searched for a set of 263 genes that have been used in previous phylogenomic analyses [12, 13].

All the sequences in the 263 gene-set, representing a wide range of eukaryotes, were used as queries to search the above datasets

using BLASTn [34]. The hits were then filtered using an e-value threshold of 1e-20 and a query coverage of 50%. Each of the gene-

sets was then aligned using MAFFT L-INS-i v7.222 and trimmed using trimAl v1.2 with a gap-threshold of 80% [35, 36]. Single gene
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trees were then constructed to identify paralogs and contaminants using IQ-TREE v.1.6.9 (LG+G4 model) or RAxML v8.2.12

(PROTGAMMALG model) with support from 1000 bootstraps [37, 38]. The resulting trees were manually scanned in FigTree

v1.4.2 and contaminants and paralogous sequences were identified and removed [39]. The final cleaned gene-sets were filtered

so that they contained only a maximum of 40% missing OTUs and then concatenated in SCaFoS v1.2.5 [29]. The resulting concat-

enated alignment consisted of 198 genes spanning 58,116 amino acid positions from 39 taxa. The phylogenomicmaximum likelihood

tree was constructed with the heterogenous mixture C40+LG+G4+F model as implemented in IQ-TREE (model LG+G4+F yielded

identical topology) [38]. Statistical support was inferred using 500 bootstrap replicates using the LG+C40+G4+F PMSF profiles,

and 1000 bootstrap replicates using the LG+G4+F model in RAxML [37, 50]. The Bayesian tree was computed using Phylobayes

[40] under the GTR-CAT model with constant sites removed from the analyses. Four independent chain were run for 9 thousand

generations and converged with maxdiff = 0.19 (20% burning) (Figure 1G).

For the plastid based phylogenomic analyses, a previously published dataset [51] was used and enriched with proteins from wide

sets of publicly available apicoplast proteins and the Piridium plastid genome. The plastid phylogenomic tree was constructed using

a concatenated alignment of 62 plastid-encoded proteins with RAxML using the LG+G4+F substitution model with 500 bootstrap

replicates [37] (Figure S2).

Search and identification of plastid proteins
Profile hidden Markov models (HMMs) were used to identify plastid metabolic proteins in our transcriptomes based on curated

alignments. To construct the curated alignments, known dinoflagellate proteins were used as queries in a BLASTp search (e-value

threshold of 1e-5) against a comprehensive custom database containing representatives comprised of major eukaryotic groups, with

a focus on plastid-containing lineages (dinoflagellates, chrompodellids, Apicomplexa, cryptophytes, haptophytes, stramenopiles,

Archaeplastida) as well as selected taxa from non-plastid lineages (Opisthokonta, Amoebozoa, Apusozoa, Ancyromonadida and

ciliates) and RefSeq data from all bacterial phyla at NCBI (https://www.ncbi.nlm.nih.gov/,

last accessed December 2017) [34]. The database was subjected to CD-HIT with a similarity threshold of 85% to reduce redundant

sequences and paralogs [41]. Results from blast searches were parsed for hits with a minimum query coverage of 50% and e-values

of less than 1e-25 (or 1e-5 for HemD). The number of bacterial hits was restrained to 20 hits per phylum (for FCB group, most classes

of Proteobacteria, PVC group, Spirochaetes, Actinobacteria, Cyanobacteria (unranked) and Firmicutes) or 10 per phylum (remaining

bacterial phyla) as defined by NCBI taxonomy. Parsed hits were aligned with MAFFT v. 7.212, using the–auto option, poorly aligned

regions were eliminated using trimAl v.1.2 with a gap threshold of 80% [35, 36]. Maximum likelihood tree reconstructions were then

performed with FastTree v. 2.1.7 using the default options [42]. The resulting phylogenies and underlying alignments were inspected

manually to remove contaminations, recent paralogs and duplicate sequences. The cleaned, unaligned sequences were then

subjected to filtering with PREQUAL using the default options to remove nonhomologous residues introduced by poor-quality

sequences, followed by alignment with MAFFT GINSi using the VSM option (unalignlevel 0.6) to control over-alignment [36, 43].

The alignments were subjected to Divvier (https://github.com/simonwhelan/Divvier) using the divvygap option to improve homology

inference before removing ambiguously aligned sites with trimAl v. 1.2 (gap threshold of 1%) [35]. Trees for final sequence curation

were calculated with IQ-TREE v. 1.6.5, using the mset option to restrict model selection (to DAYHOFF, DCMUT, JTT, WAG, VT,

BLOSUM62, LG, PMB, JTTDCMUT) for ModelFinder, while branch support was assessed with 1000 ultrafast bootstrap replicates,

and once more subjected to manual inspection [38, 52].

Profile HMMs were then generated using these curated alignments and HMM searches were conducted on all transcriptomes and

genomes using HMMER v3.1 and an e-value threshold of 1e-5 [53]. All the hits were then extracted and incorporated into the original

alignments and realigned usingMAFFT v7.222 (–auto option). The resulting alignments were then used to generate phylogenies in IQ-

TREE v.1.6.9 using the LG+F+G4 substitution model and statistical support was assessed using 1000 ultrafast bootstrap replicates

[38, 52]. The phylogenies were then manually scanned in FigTree v1.4.2 and contaminants, paralogs, mitochondrial sequences, and

long-branching divergent sequences were identified and removed [39]. The remaining sequences were realigned and used to

generate maximum likelihood phylogenies in IQ-TREE v.1.6.9 [38]. Phylogenetic models were selected for each tree individually

based on Bayesian Information Criteria using ModelFinder as implemented in IQ-TREE, and statistical support was assessed using

1000 ultrafast bootstrap pseudoreplicates [34, 54].

Search for plastid localization signals
To investigate the N-terminal extensions and thus intracellular location of proteins of interest, corresponding alignments were

manually inspected for completeness of the sequences and for Nterminal extensions relative to prokaryotic or cytosolic homologs.

Prediction of signal peptides as part of N-terminal bipartite leader sequences was performed with the Hidden Markov Model of

SignalP3.0 using the default truncation setting of 70 residues [44]. To predict putative Nterminal transmembrane domains, TMHMM

v. 2.0 was used only on the first 100 amino acid residues of the transcript to improve prediction accuracy [45]. Putative plastid transit

peptides were interpreted as 24-aa stretches downstream of the signal peptide, representing the minimum length for apicomplexan

transit peptides still within the N-terminal extension and upstream of the estimated start of the mature protein, as described

by Parsons et al. [55] Conserved domains and their coordinates in the mature protein region of candidate sequences were identified

with the Pfam sequence search service on http://pfam.xfam.org/search/sequence, using the gathering threshold as a cut-off

(Table S1).
Current Biology 29, 2936–2941.e1–e5, September 9, 2019 e4

https://www.ncbi.nlm.nih.gov/
https://github.com/simonwhelan/Divvier
http://pfam.xfam.org/search/sequence


Analysis of cellular metabolic pathways
We reconstructed the metabolic maps for our new transcriptomes, as well as representative species across the apicomplexan and

chrompodellids, using Kyoto Encyclopedia of Genes and Genomes (KEGG) [46]. We first assigned KEGG ortholog identifiers (KO) to

all proteomes using the web-based server, KAAS (KEGG Automatic Annotation Server) (https://www.genome.jp/kegg/kaas/), and

where possible we used annotations already available within KEGG. The assigned KO numbers were used to identify complete

metabolic pathways using the KEGG reconstruct module and module mapper. Complete metabolic pathways present in Piridium,

Platyproteum or both but missing in other apicomplexans were further investigated. The identity of all proteins in these unique

pathways were confirmed using BLASTp to ensure removal of contaminants and false positives (Table S2).

Ortholog identification and search for apicomplexan invasion/extracellular proteins
Orthofinder was used to infer orthologs within the apicomplexans, chrompodellids and Platyproteum, whileOxytricha, Tetrahymena,

Symbiodinium and Perkinsus were used as a outgroup for the analyses [56]. Diamond searches were used to identify homologs

between pairs of taxa [47]. The Orthofinder results were then analyzed using Dollo parsimony as implemented in the program Count

to obtain estimates of gene gain and loss across different species [48]. Previously published sets of invasion (98 proteins from

Plasmodium falciparum 3D7) and extracellular (722 proteins from diverse apicomplexans) proteins, as well as flagellar proteins,

were then identified within orthogroups and their orthologs in the studied taxa were recorded (Table S3) [3, 4].

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical support for the phylogenomics tree was inferred using 500 bootstrap replicates using the LG+C40+G4+F PMSF profiles,

and 1000 bootstrap replicates using the LG+G4+Fmodel in RAxML [37, 50] (Figure 1). For the plastid based phylogenomic analyses,

500 non-parametric bootstrap replicates were used to assess support for the tree topology in RAxML (Figure S2) [37]. For the HMM

search based phylogenies statistical support was assessed using 1000 ultrafast bootstrap pseudoreplicates in IQ-TREE [34].

DATA AND CODE AVAILABILITY

The genome and transcriptome sequencing reads are available in the NCBI Short Read Archive (SRA) NCBI: PRJNA539986. The Piri-

dium sociabile plastid genome is available on GenBank: MK962129.
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