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Non-photosynthetic predators are sister to red algae

Ryan M. R. Gawryluk'>>#, Denis V. Tikhonenkov>2°*, Elisabeth Hehenberger!4, Filip Husnik!, Alexander P. Mylnikov? &

Patrick J. Keeling"

Rhodophyta (red algae) is one of three lineages of Archaeplastida’,
a supergroup that is united by the primary endosymbiotic origin
of plastids in eukaryotes®>. Red algae are a diverse and species-
rich group, members of which are typically photoautotrophic,
but are united by a number of highly derived characteristics: they
have relatively small intron-poor genomes, reduced metabolism
and lack cytoskeletal structures that are associated with motility,
flagella and centrioles. This suggests that marked gene loss occurred
around their origin*; however, this is difficult to reconstruct
because they differ so much from the other archaeplastid lineages,
and the relationships between these lineages are unclear. Here we
describe the novel eukaryotic phylum Rhodelphidia and, using
phylogenomics, demonstrate that it is a closely related sister to red
algae. However, the characteristics of the two Rhodelphis species
described here are nearly opposite to those that define red algae:
they are non-photosynthetic, flagellate predators with gene-rich
genomes, along with a relic genome-lacking primary plastid that
probably participates in haem synthesis. Overall, these findings
alter our views of the origins of Rhodophyta, and Archaeplastida
evolution as a whole, as they indicate that mixotrophic feeding—that
is, a combination of predation and phototrophy—persisted well into
the evolution of the group.

Two previously undescribed eukaryovorous protists, Rhodelphis
limneticus and Rhodelphis marinus (see Supplementary Information
for taxonomic diagnosis), were isolated from a freshwater lake and
marine coral sand, respectively. Rhodelphis are 10-13 pm, oval or
tapered, slightly flattened cells with two subapical heterodynamic
flagella (Fig. 1a-f and Extended Data Figs. 1a, 2a, b). Characteristic
morphological features include umbrella-shaped glycostyles on the cell
surface and flagellum (Fig. 1g, h, s and Extended Data Figs. 1d, 2c-e),
perpendicularly oriented flagellar basal bodies (Fig. 1i, j and Extended
Data Figs. 1e, k, 1, 2g, h) with outgoing striated structures and at least
two fibrils (Fig. 1j-1 and Extended Data Fig. 2e), one narrow and two
wide microtubular bands (Fig. 11-q and Extended Data Fig. 1h-1),a
flagellar transition zone with a transverse plate at the cell surface and
a proximal diaphragm through which a central pair of flagellar micro-
tubules surrounded by a cylinder passes (Fig. 1q, r and Extended Data
Fig. 1e-h), a sac-shaped double-layered smooth endoplasmic reticulum
(Fig. 1 s—u and Extended Data Fig. 10) and mitochondria with tubular
cristae (Fig. 1 s—u and Extended Data Fig. 2g, h, j). Plastids were not
observed.

To establish the evolutionary position of Rhodelphis, we sequenced
transcriptomes from cultures and manually isolated cells, and generated
a concatenated 153-taxon/253-protein supermatrix (153/253 dataset;
56,312 sites). Maximum-likelihood and Bayesian analyses recovered
Rhodelphis as a well-supported sister to the red algae, with ultrafast
bootstrap support of 97%, Shimodaira-Hasegawa-like approximate
likelihood ratio test (SH-aLRT') support of 0.99 and a Bayesian poste-
rior probability of 0.98 (Extended Data Fig. 3a, b). Analyses of a second
supermatrix without the picozoan MS584-11° and Telonema (both of
which had poor datasets; 151-taxon/253-protein supermatrix (151/253
dataset), 56,530 sites), recovered Rhodelphis and red algae with

complete statistical support (Fig. 2a, b and Extended Data Fig. 4a, b),
although approximately unbiased tests were unable to distinguish
between Archaeplastida monophyly or paraphyly (P = 0.6693 and
P =0.3397, respectively). To examine the possibility that long-branch
attraction affected the position of Rhodelphis, we carried out fast-site
removal analyses, which showed that support for the sisterhood of
Rhodelphis and red algae remained high for both 153/253 (Extended
Data Fig. 3c) and 151/253 datasets (Fig. 2c). To test whether mixed
gene ancestry (for example, from horizontal gene transfer) affected
the phylogenetic placement of Rhodelphis, we calculated internode
certainty values® from 253 bootstrapped single-gene trees and the 50 trees
with the highest relative tree certainty. These analyses showed a degree
of conflict that is similar to other ancient but well-established rela-
tionships (such as opisthokont monophyly) and that the internode
certainty scores for the Rhodelphis and red algae bipartition increase
in the 50 best-supported trees (Extended Data Fig. 5a, b), which also
recover Rhodelphis as sisters to the red algae in a concatenated phylog-
eny (Extended Data Fig. 6). Coalescent species trees” estimated from
the 253 and 50 single-gene tree datasets also recover Rhodelphis and red
algae as sisters, with full support (Extended Data Fig. 7a, b).

Most Archaeplastida are photoautotrophic and phagotrophy is very
rare. However, phagotrophy must have existed for the archaeplastid
ancestor to take up the plastid, and must have persisted at least until
the protoplastid became a reliable source of both energy and nutrients.
This suggests a key mixotrophic intermediate stage; however, because
the few known phagotrophic archaeplastids have been interpreted as
secondarily derived, it has been widely assumed that phagotrophy was
lost early in the evolution of archaeplastids®. We therefore characterized
the Rhodelphis genome and transcriptomes further to investigate the
ancestral states of phagotrophy and other characteristics that are seem-
ingly absent from red algal and archaeplastid ancestors. Altogether,
these analyses suggest that Rhodelphis possess larger and more gene-
rich nuclear genomes than most red algae (Extended Data Table 1a—c)
and genes with many more introns (nearly 40,000 spliceosomal introns
were identified in genome-transcriptome comparisons in R. limneti-
cus). But the most notable differences between Rhodelphis and red algae
are in gene content: Rhodelphis possess genes that are associated with
centrioles, autophagy and synthesis of glycosylphosphatidylinositol,
all of which are absent from red algae’. Notably, genes that encode
flagellar proteins are absent from red algae, whereas Rhodelphis encode
homologues of 209 out of 361 high-confidence Chlamydomonas flagel-
lar proteins!’, consistent with our microscopic observations.

Rhodelphis engulf whole bacteria and eukaryotic prey at the posterior
end (Extended Data Fig. 1r-t and Supplementary Video 1), but a dis-
tinct feeding apparatus is not evident. Phagotrophy in Rhodelphis there-
fore differs from feeding in some prasinophytes (the only other known
class in which phagotrophy occurs within Archaeplastida), which use
a mouth-like opening, a tubular channel and a large permanent vac-
uole to engulf, transport and digest bacterial cells'!. Specific genetic
markers of phagotrophy are difficult to define; however, genome-level
predictive models'? indicate that the genetic repertoire of Rhodelphis
is consistent with phagocytotic feeding (Extended Data Fig. 8).
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Fig. 1| Cell morphology of R. limneticus. a-c, Living cells, visualized
by light microscopy. d, Cyst, visualized by light microscopy. e, Scanning
electron microscopy image highlighting the flagella. f-u, Cells,
visualized by transmission electron microscopy. f, Longitudinal section.
g, Glycostyles can be seen on the cell surface. h, Transverse section of
the posterior flagellum covered with glycostyles. i-1, Arrangement of
basal bodies, connecting structures and satellites. m-p, Arrangement
of microtubular bands, microtubules and satellites. q, r, Structure of the
flagellar transition zone. s, t, Transverse sections of the cell showing the
sac-shaped smooth endoplasmic reticulum, nucleus and mitochondria.
u, Area near the endoplasmic reticulum showing a single mitochondrion
with dark condensations and vesicles with rudiments of glycostyles.

Taken together, the cellular motility and phagotrophic feeding by
Rhodelphis and the ancestral photosynthetic capacity of red algae indi-
cates that their common ancestor was mixotrophic.

Although an ancestor of Rhodelphis must have been photosynthetic,
no plastids were observed using microscopy, so we searched for genetic
evidence of a relic plastid, as complete loss of the plastid is exceedingly
rare!>!. In archaeplastids, nucleus-encoded proteins are targeted to
plastids through N-terminal transit-peptide leaders that are recognized
by TIC/TOC import complexes. We identified homologues of several
plastid import proteins in Rhodelphis, including TIC20, TIC22, TIC32
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af, anterior flagellum; cl, cylinder; cv, contractile vacuole; cr, cristae; cmt,
central microtubules; dc, dark condensation; dp, diaphragm; fb, fibril; fv,
food vacuole; gl, glycostyles; bb1, basal body of posterior flagellum; bb2,
basal body of anterior flagellum; mt, mitochondrion; mrt, microtubule;

n, nucleus; nmb, narrow microtubular band; ob, osmiophilic body; pf,
posterior flagellum; rgl, rudiments of glycostyles; rs, reserve substance; ser,
sac of smooth endoplasmic reticulum; sm, single microtubules; ss, striated
structure; st, satellite of basal body; tp, transverse plate; wmbl1, wide
microtubular band 1; wmb2, wide microtubular band 2. Scale bars, 10 pm
(a-c), 5pm (d, e), 1 pm (f), 0.2 pm (g, h, n-p, r), 0.5 pm (i-m, q, u) and

2 pm (s, t). These experiments were repeated 50 (a-d), 3 (e) and 7 (f-u)
times, with similar results.

and TOC75 (Extended Data Fig. 9b—e), as well as many proteins with a
putative plastid function (Fig. 3a and Supplementary Table 1). Notably,
plastid proteins of Rhodelphis encode leader sequences that are similar to
archaeplastid transit peptides (Extended Data Fig. 9a); they do not have
bipartite leader sequences or specific homologues of SELMA complex
subunits'® that are indicative of protein targeting to complex plastids
by the endoplasmic reticulum. Taken together, the evidence from the
analysis of the phylogenomics, plastid-targeting leaders and plastid
import machinery is consistent with the conclusion that Rhodelphis
have a primary plastid as with other members of Archaeplastida.
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Consistent with their lack of pigmentation, Rhodelphis encode almost
no proteins that are involved in photosynthesis. The exceptions are
ferredoxin and ferredoxin NADP™ reductase, which probably partic-
ipate in FeS cluster assembly through the plastidial SUF-type (sulfur
assimilation) biosynthesis pathway (Fig. 3a). A mitochondrial-type iron
sulfur cluster (ISC) pathway is also present in Rhodelphis, which sug-
gests that the SUF system supports only plastid FeS proteins.

We found no evidence for the type II fatty acid biosynthesis pathway
that is typical of plastids. Instead, Rhodelphis synthesize fatty acids in
the cytosol, through a multidomain type I fatty acid synthase, which

a b
CPN60
Flagella
(swimming) 87 Cyanobacteria
Nucleus 88
Basal Geredicim
bodies ntron-ric
P 94
5 / 73
87 88

Plastid Mitochondrion

NifUJSufE LTeCHA W Cytosol
SufB SufC X Ry
.~'-‘ S Isoprenoid
@ v biosynthesis
FeS acetyl-coA
}
Type |l mevalonate
fatty acid
. biosynthesis
Phagocytosis (Fl;\SI) PP
(eukaryotic prey) ... \
Mastigonemes O Exocytosis 94
Digestion
(lysosomes)
4 v

78

242 | NATURE | VOL 572 | 8 AUGUST 2019

Galdieria sulphuraria

Pyropia yezoensis
Porphyra purpurea
Porphyra umbilicalis
Porphyridium aerugineum
Porphyridium cruentum

Erythrolobus australicus

Madagascaria erythrocladiodes
Compsopogon coeruleus

Cyanidioschyzon merolae
gow
— ]

Fig. 2 | The evolutionary position of Rhodelphis. a, b, Bayesian

(a; CAT + GTR)? and maximum-likelihood (b; 151/253 dataset;

LG + C60 + F + G4)*! analyses place Rhodelphis as a sister to red

algae (Rhodophyta). Bayesian analyses also recover the monophyly of
Archaeplastida, whereas maximum-likelihood analyses do not. Black dots
denote full statistical support for the Bayesian tree (a; Bayesian posterior
probability = 1.0) or maximum-likelihood tree (b; maximum-likelihood
ultrafast bootstrap = 100%/SH-aLRT = 1.0); support values below 1.0 or
100% are shown in cases in which either value is below this value; support
values <0.7 or 70% are not shown (indicated by a ‘—’). Complete Bayesian
and maximum-likelihood trees for 151/253 and 153/253 datasets are
shown in Extended Data Figs. 3 and 4, respectively. ¢, Bootstrap support
for maximume-likelihood trees (PROT + CAT + LG + F) after progressive
removal of the fastest-evolving amino acid sites (151/253 supermatrix)
shows that the Rhodelphis and red algae relationship is robust, but that
Archaeplastida paraphyly (Cryptista, and green plants and glaucophytes)
may be the result of long branch attraction. Support for Opisthokonta
monophyly serves as a control for the presence of sufficient information
for phylogenomic inference. A parallel analysis for 153/253 is shown in
Extended Data Fig. 3c.

is found in numerous animals, fungi and protists, but not in archae-
plastids (Fig. 3a). Furthermore, Rhodelphis also lack the plastid methy-
lerythritol phosphate (MEP) isoprenoid biosynthetic pathway, and use
the cytosolic mevalonate (MVA) pathway instead (Fig. 3a). The MVA
pathway is patchily distributed among red algae, and has been inde-
pendently lost numerous times’, whereas the MEP pathway is found
in most archaeplastids that have been examined to date. The distribu-
tion of both pathways highlights the potential for long-term functional
redundancy to shape gene loss and metabolic reorganization.

By contrast, most Rhodelphis haem biosynthetic enzymes are prob-
ably targeted to plastids, with the exception of the first step that is cat-
alysed by 6-aminolevulinic acid synthase (ALAS), which is probably a
mitochondrial protein (Fig. 3a); this is probably the major reason that
Rhodelphis plastids have not been lost. All of the putatively plastid-
targeted haem proteins are of the typical plastid-type (phylogenetic
trees are available through the Dryad Digital Repository), except fer-
rochelatase (HemH), which branches with homologues from some
red algae and dinoflagellates that are in turn nested within a group

Fig. 3 | Genomic insights into Rhodelphis cell
biology. a, Rhodelphis genome and transcriptome
analyses reveal a relic plastid that generates

FeS clusters and probably cooperates with
mitochondria in haem biosynthesis, cytosolic
isoprenoid and fatty acid synthesis, extensive
nuclear mRNA splicing (coloured lines on
chromosomes), phagocytosis (Extended Data
Fig. 8 and Supplementary Video 1), basal bodies
and flagella (a long flagellum was shortened to fit).
Note that subcellular structures are not drawn to
scale and the mitochondrial genome has not been
verified to be circular. b, Maximum-likelihood
phylogeny of Cpn60 with a predicted N-terminal
transit peptide (Extended Data Fig. 9), indicating
the presence of a primary plastid in Rhodelphis,
although none were observed by microscopy.
Rhodelphis Cpn60 groups basal to homologues
from red algae and other eukaryotes with plastids
derived from red algae (coloured wedges).

Other putative plastid proteins are presented

in Supplementary Table 1. IPP, isopentenyl
pyrophosphate. Eukaryotic groups are indicated
by coloured taxon names/collapsed clades: green,
Viridiplantae; red, red algae; grey, glaucophytes;
turquoise, cryptophytes; pink, stramenopiles;
dark blue, haptophytes; yellow, dinoflagellates;
orange, chrompodellids and apicomplexans;
brown, opisthokonts, amoebozoans, apusozoans,
ancyromonads and ciliates. Taxa or clades
outlined in black are prokaryotic.
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of bacterial homologues. Other red algae and lineages with red algal
plastids—such as diatoms, cryptophytes and ochrophytes—have a
typical cyanobacterial HemH!'®. This again suggests that there is redun-
dancy of HemH types in the common ancestor of Rhodelphis and red
algae.

Despite finding many nucleus-encoded putatively plastid-targeted
proteins, we found no evidence that supports the existence of a plastid
genome. No plastid DNA is present in the genomic datasets of
R. limneticus, which were generated from over 300 million paired reads
from both cultures and single cells. By contrast, mitochondrial DNA
was readily identified; the genome could not be unambiguously assem-
bled, but is >100 kilobases and individual contigs were connected in a
single contig map. Similarly, no nucleus-encoded components of plastid
genome replication, gene expression or translation systems were identi-
fied in any Rhodelphis dataset. Notably, many of the nucleus-encoded,
putatively plastid-targeted Rhodelphis proteins that we did identify are
encoded in plastid genomes of red algae. Taken together, we interpret
these observations as strong evidence for the complete loss of plastid
DNA in Rhodelphis. This has only been reported in a few non-
photosynthetic plastids'”!® and is in contrast to the gene-rich nature
of the plastid genomes of red algae'.

In conclusion, phylogenomic analyses strongly support the place-
ment of Rhodelphis as a sister lineage to red algae. Rhodelphis are
flagellate predators with primary, non-photosynthetic plastids that
are involved in haem biosynthesis; all of which indicates that the
ancestor of Rhodelphis and red algae was very different from previ-
ous models of the ancestors of red algae. This ancestor was probably
a mixotrophic flagellate that obtained energy and nutrients from both
photosynthetic plastids and phagotrophy, which suggests that phag-
otrophy persisted within Archaeplastida until well after the diver-
gence of red algae from green plants and glaucophytes. The gene- and
intron-rich genomes and complex pattern of biosynthetic pathway
retention also provide insights into the potential for functional redun-
dancy to persist over considerable periods of evolutionary time,
followed by differential loss. Indeed, Rhodelphis reveals that the
absence of phagotrophy and many other characteristics of the
Archaeplastida as a whole are due to multiple convergent losses rather
than an already established ancestral state.
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METHODS

Data reporting. No statistical methods were used to predetermine sample size.
The experiments were not randomized and the investigators were not blinded to
allocation during experiments and outcome assessment.

Cell isolation and culture establishment. R. marinus (clone Colp-29) was obtained
from near-shore marine coral sand off the coast of a small island, Bay Canh,
near Con Dao Island, South Vietnam (8° 39’ 58.6362" N, 106° 40’ 49.7562" E).
The sample was collected from a depth of 40 cm on 3 May 2015.

R. limneticus (clone Colp-38) was obtained from a near-shore freshwater sample
including organic debris, taken by Y. V. Dubrovsky (IEE NAS Ukraine) on 9 August
2016 from Lake Trubin (floodlands of Desna River, 51° 23’ 49.9986" N, 32° 22/
8.0004” E), near Yaduty village, Chernigovskaya oblast, Ukraine.

The samples were examined on the third, sixth and ninth day of incubation

in accordance with previously described methods®?. Following isolation by glass
micropipette, R. marinus and R. limneticus were propagated on the bodonids
Procryptobia sorokini strain B-69 and Parabodo caudatus strain BAS-1, respec-
tively, which were grown in marine Schmalz-Pratt’s medium and spring water
(Aqua Minerale, PepsiCo or PC Natural Spring Water, President’s Choice) using
the bacterium Pseudomonas fluorescens as food?>. R. limneticus is currently being
stored in a collection of live protozoan cultures at the Papanin Institute for Biology
of Inland Waters, Russian Academy of Sciences; however, R. marinus perished after
several months of cultivation.
Light and electron microscopy. Light microscopy observations of R. limneticus
were made using a Zeiss AxioScope A.1 equipped with a differential interference
contrast (DIC) water-immersion objective (63 x) and an AVT HORN MC-1009/S
analogue video camera. Observations of R. marinus were made using a Zeiss
Axioplan 2 Imaging microscope equipped with a DIC objective (40 ) and a Canon
XL H1S video camera.

For scanning electron microscopy, cells from a culture in exponential growth
phase were fixed with 2.5% glutaraldehyde (final concentration). The cells were
mounted on a glass coverslip coated with poly-L-lysine for 30 min and subsequently
rinsed three times with 0.1 M sodium cacodylate buffer (pH 7.34), which was
diluted twice with spring water (PC Natural Spring Water, President’s Choice).
Next, cells were fixed in 1% osmium tetroxide for 1 h. The fixed cells were rinsed
three times with distilled water, 10 min each time, and dehydrated with a graded
ethanol series from 30% to absolute ethanol (10 min per step), followed by 100%
hexamethyldisilazane (three times, 15 min each) and dried at 65°C. Dry glass
coverslips were mounted on aluminium stubs, coated with gold-palladium, and
observed with a Hitachi S4700 scanning electron microscope (Hitachi High-
Technologies Corporation).

For transmission electron microscopy, cells were centrifuged, fixed in a cocktail

of 0.6% glutaraldehyde and 2% osmium tetroxide (final concentration) prepared
using a 0.1 M cacodylate buffer (pH 7.2) for freshwater cells, or Schmaltz-Pratt
medium for marine cells at 1°C for 30-60 min and dehydrated in an alcohol and
acetone series (30, 50, 70, 96 and 100%; 20 min per step). Finally, cells were embed-
ded in a mixture of Araldite and Epon?*, Ultrathin sections were obtained with
an LKB ultramicrotome. Transmission electron microscopy observations were
obtained using a JEM-1011 (JEOL) electron microscope.
Preparation of libraries and sequencing. RNA and genomic DNA isolation. Cells
grown in clonal laboratory cultures were collected when the cultures had reached
peak abundance and after the prey had been eaten (based on daily light microscopy
observations). Cells were collected by centrifugation (1,000g, room temperature)
onto a 0.8-pm membrane of a Vivaclear mini column (Sartorius Stedim Biotech,
VKO01P042); this was done separately for RNA and DNA extractions. Total RNA
was then extracted using an RNAqueous-Micro Kit (Invitrogen, AM1931) and
converted into cDNA using the Smart-Seq2 protocol®. Additionally, cDNA of
R. limneticus was obtained from 20 single cells using the Smart-Seq2 protocol:
cells were manually picked from the culture using a glass micropipette and
transferred to a 0.2-ml thin-walled PCR tube containing 2 pl cell lysis buffer
(0.2% Triton X-100 and RNase inhibitor (Invitrogen)). Total DNA was extracted
from the filters using the MasterPure Complete DNA and RNA Purification Kit
(Epicentre, MC85200).

The small subunit (SSU) rRNA genes of R. marinus and R. limneticus were
amplified by polymerase chain reaction (PCR) using the general eukar-
yotic primers GGF (CTTCGGTCATAGATTAAGCCATGC) and GGR
(CCTTGTTACGACTTCTCCTTCCTC) and 18SFU and 18SRU?, respectively.
PCR products were subsequently cloned (R. marinus) or sequenced directly
(R. limneticus) using Sanger dideoxy sequencing.

R. limneticus transcriptome sequencing was performed on the Illumina MiSeq
platform with read lengths of 300 bp using the NexteraXT protocol (Illumina,
FC-131-1024) to construct paired-end libraries. R. marinus transcriptome sequenc-
ing was performed on the Illumina HiSeq platform (UCLA Clinical Microarray
Core) with read lengths of 100 bp using the KAPA stranded RNA-seq kit (Roche)
to construct paired-end libraries.

R. limneticus DNA was extracted from cultures (containing R. limneticus, prey

and bacteria) using the MasterPure DNA Purification Kit (Epicentre) or obtained
from three individually picked cells through whole-genome amplification using the
TruePrime Single Cell WGA kit v.2.0 (Expedeon) according to the manufacturer’s
instructions. Libraries were generated at The Centre of Applied Genomics and
151-bp paired-end reads were sequenced on an Illumina HiSeq X. Whole-genome
amplified DNA (TruePrime Single Cell WGA kit v.2.0 (Expedeon)) was sequenced
on MinION, Oxford Nanopore Technologies using the Ligation Sequencing Kit
1D (SQK-LSK108, Oxford Nanopore Technologies). Covaris shearing was omit-
ted to preserve long fragments. DNA was initially treated with T7 endonuclease
to remove extremely branched DNA structures resulting from whole-genome
amplification.
Sequencing dataset assembly and decontamination. Sequence quality and adaptor
contamination of reads from transcriptomic datasets were assessed with FastQC?’.
Reads were trimmed with Trimmomatic-0.32 ILLUMINACLIP?, with a maximum
of two mismatches, a palindromeClipThreshold of 30 and a simpleClipThreshold
of 10. Low-quality sequences were discarded, using a sliding window of 4 bp, a
minimum quality score of 25 and a minimum trimmed length of 35 bp.

A strand-specific R. marinus HiSeq transcriptome was assembled with Trinity
v.2.0.6%, with the --SS_lib_type flag set to RE. MiSeq transcriptomes of R. limne-
ticus from culture or 20-cell preparations were assembled in essentially the same
manner, but without strand specificity. Transdecoder was used to infer the most
likely open reading frame sequences, informed by blastp*® and hmmscan queries
of the Swissprot and Pfam databases, respectively (E-value cut-off = 1 x 107).
CD-HIT?! was used to reduce the redundancy of the inferred protein dataset
by clustering proteins with >95% identity. Extensive in silico decontamination
was performed to remove sequences derived from the eukaryotic prey P. sorokini
(R. marinus), P. caudatus (R. limneticus) and co-cultured bacteria. We used mega-
blast to identify transcripts that were >95% identical to sequences of previously
generated P. sorokini and P. caudatus MiSeq transcriptome datasets, along with
previously generated HiSeq transcriptome datasets from protists that feed on
P, sorokini or P. caudatus (that is, sequences that these datasets had in common
were probably derived from P. sorokini or P. caudatus). Contaminating bacterial
sequences were identified using megablast and blastp queries of the NCBI nt and
nr databases. Nucleotide sequences that were >80% identical to bacterial entries
were removed. For a protein sequence from the Rhodelphis datasets to be classified
as bacterial, each of the top-15 blastp hits had to be most similar to a bacterial
homologue and >70% identical to a bacterial protein. Assessment of transcriptome
completeness was performed by searching ‘eukaryote’ protein datasets with BUSCO
v.3.0.1%2, using default parameters.

The R. limneticus genome was assembled from HiSeq X reads (either culture
or whole-genome-amplified DNA from single cells (WGA)) and MinION reads
using SPAdes v.3.11.1% with kmer lengths of 21, 33, 55, 77, 99 and 121, and with
the ‘-sc’ flag activated for the single-cell assembly. For each of the WGA and culture
genome assemblies, contigs from co-cultured contaminants (for example, kine-
toplastid prey and bacteria) were identified using Autometa® and removed. As
expected, the culture dataset was heavily contaminated, whereas WGA contigs
were predominantly from R. limneticus. Assessments of genome assembly were
performed using QUAST v.5.0.2%.

A search for putative spliceosomal introns in R. limneticus was performed by
aligning transcripts to the culture assembly, requiring a minimum 95% identity
threshold, using GMAP v.2016-08-16. Spliceosomal introns with GT/AG splice
boundaries were extracted from the GMAP output with a custom Python script
and visualized with WebLogo®”. The total proportion of transcripts from R. limne-
ticus mapping to the nuclear genome sequence was determined with isoblat v.3%,

Searches for a plastid genome were carried out by querying Rhodelphis tran-
scriptome and genome datasets with red algal plastid-encoded RNAs and proteins,
and by searching for rRNAs of plastidial/cyanobacterial affinity with phyloFlash
v.3.0%°. All plastid-type proteins that were found are probably encoded by DNA in
the nucleus and no plastidial/cyanobacterial rRNAs were found.

Phylogenomic dataset preparation and analysis. Construction of a phylogenomic
supermatrix was performed essentially as previously described®’, using nearly
the same dataset. In brief, blastp was used to identify Rhodelphis homologues,
with an expect value threshold of <1 x 107°. Alignments were generated with
MAFFT L-INS-1v.7.212*! and trimmed automatically with BMGE v.1.12*? based
on the BLOSUM75 substitution matrix. Single-protein maximum-likelihood
phylogenies—derived from 20 independent heuristic searches with RAxXML
v.8.1.6" using the PROTGAMMALGF model—were used to screen for paralogues
and sequences that were probably derived from prey contamination. Individual
trimmed alignments were concatenated with SCaFOs v.1.2.5%, requiring a
minimum of 15% coverage for inclusion. The final concatenated alignment
included 153 taxa, 253 proteins and 56,312 amino acid sites (153/253 dataset);
R. marinus and R. limneticus were well-represented (R. marinus, 98% of genes
and 99% of sites; R. limneticus, 94% of genes and 93% of sites). Another alignment



was generated without the picozoan MS584-11 and Telonema, leaving 151 taxa,
253 proteins, and 56,530 sites (151/253 dataset); R. marinus and R. limneticus were
again well represented (R. marinus, 98% of genes and 99% of sites; R. limneticus,
94% of genes and 93% of sites).

Maximum-likelihood phylogenomic tree reconstruction was performed using
IQ-TREE v.1.5.5%! with the LG matrix combined with the C60 protein mixture
model and four gamma categories (that is, LG + C60 + F + G4). The results of
1,000 ultrafast bootstrap and SH-aLRT replicates are reported as a measure of
statistical support for bipartitions. Bayesian analyses were carried out by run-
ning three independent Markov chain Monte Carlo chains with PhyloBayes
MPI v.1.7%, using an infinite mixture model and four discrete gamma cate-
gories (CAT + GTR + G4). Chains were run for more than 7,200 generations
for both the 153/253 and 151/253 datasets, and the first 1,500 generations were
discarded as burn-in. As is frequently seen in large-scale phylogenomic analyses,
the chains failed to converge in each case; for the 153/253 dataset, maxdiff = 1
and meandiff = 0.0128946, and for the 151/253 dataset, maxdiff = 1 and mean-
diff = 0.0204329. Bayesian posterior probabilities are reported as a measure of
statistical support for bipartitions.

The effect of fast-evolving sites on phylogenomic inference was examined by
progressively removing the fastest-evolving sites in intervals of 3,000 and using
RAXML (PROT + CAT + LG + F model) to generate 100 rapid-bootstrap replicates
for each alignment. The fastest-evolving sites were identified using AgentSmith,
based on the tree topologies generated in the IQ-TREE LG + C60 + F + G4 153-
and 151-taxon trees. The support for the sister relationship of Rhodelphis and red
algae was assessed for both trees; support for Archaeplastida monophyly versus
Cryptista, glaucophytes and green plants (Cryptista and GG) was similarly tested
for both datasets. Support for Picozoa, Rhodelphis and red algae was assessed only
for the 153-taxon tree. In each case, the monophyly of Opisthokonta was tested as
a positive control. Alternative tree topologies were generated from the maximum-
likelihood trees using Mesquite v.3.5% and tested using the approximately unbiased
test, as implemented in IQ-TREE v.1.5.5%!.

We carried out a number of analyses to test whether mixed gene ancestry could
be affecting the phylogenetic analysis. RAXML*® was used to compute internode
certainty scores® by mapping bootstrapped single-gene trees (generated as above,
except with the PROTCATLGF model) to the 151/253 maximum-likelihood
phylogenomic tree (Extended Data Fig. 4b). We subsequently identified the 50 single-
gene trees with the highest relative tree certainty (RTC) values with RAXML*
(average RTC score for all 253 single-gene trees is 0.175; average for best 50 is
0.362), and computed internode certainty scores for this subset of the data, as
above. To test whether the 50 highest RTC single-gene datasets recover the sister
relationship of Rhodelphis and red algae, we concatenated the alignments with
SCaFOs v.1.2.5% and performed phylogenetic analysis in IQ-TREE using the
LG + PMSF + G model along with 1,000 ultrafast bootstrap and SH-aLRT rep-
licates. ASTRAL-ITI” was used to calculate overall species trees from individual
bootstrapped trees under a ‘coalescence’ framework, using default parameters and
100 multilocus bootstrap replicates.

Identification of putative plastid-targeted proteins. A screen for Rhodelphis
proteins bearing putative N-terminal plastid transit peptides was performed with
TargetP?, with the ‘Plant’ flag activated. Proteins with a score corresponding to a
70% probability of plastid localization were retained for further manual inspection.
Additionally, we queried the NCBI nr database with Rhodelphis protein sequences
in search of proteins that were most similar to characterized plastidial or cyanobac-
terial homologues, and queried the Rhodelphis genome and transcriptome assem-
blies with proteins encoded by red algal plastid genomes. We considered proteins
to potentially be plastidial if they fulfilled both of the above criteria, or if they were
constituents of a metabolic unit of members which predominantly met the criteria.
Plastid protein phylogenies. Proteins of R. marinus and R. limneticus identified as
being putatively plastid-targeted were either added to existing alignments (FeS clus-
ter and haem biosynthesis pathway proteins) or used as queries in a blastp search
(E-value threshold of 1 x 10~°) against a comprehensive custom database, which
contained representatives of plastid-bearing and non-plastidial groups (archaeplas-
tids, cryptophytes, haptophytes, stramenopiles, dinoflagellates, chrompodellids,
apicomplexans as well as opisthokonts, amoebozoans/apusozoans/ancyromonads
and ciliates). For the TIC22 and TOC75 alignments, additional known homologues
were used as queries, to extend the number of taxa obtained with R. marinus and
R. limneticus. Results from blast searches were parsed for hits with a minimum
query coverage of 50% and E < 1 x 10~® or E < 1 x 10~° (TIC/TOC and YCF
proteins, respectively). The number of bacterial hits was constrained to 20 hits
per phylum (for the Fibrobacteres—Chlorobi-Bacteroidetes group, most classes
of Proteobacteria, the Planctomycetes—Verrucomicrobia—Chlamydiae group,
Spirochaetes, Actinobacteria, Cyanobacteria (unranked) and Firmicutes) or 10 per
phylum (remaining bacterial phyla) as defined by NCBI taxonomy. For initial
tree reconstruction, corresponding sequences were aligned with MAFFT using
the “--auto’ option, ambiguously aligned positions were trimmed off with trimAL
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v.1.2%7 using a gap threshold of 20% and trees were calculated using FastTree*s with
default options. Resulting phylogenies and underlying alignments were manually
inspected, and obvious contaminations and paralogues were removed. Cleaned
sequence files as well as the pre-existing alignments with added R. marinus/
R. limneticus sequences were filtered using prequel v.1.0.2% to remove stretches
of non-homologous characters and then aligned using the G-INS-I algorithm of
MAFFT in combination with VSM®’, using an i,y of 0.6, to reduce over-alignment.
Alignments were trimmed as above and final trees were reconstructed using
IQTREE?!, using ModelFinder®! to identify the best model for each alignment
based on the Bayesian information criterion. Node supports were calculated with
1,000 ultrafast bootstrap (UFBoot) replicates.

Comparison of Rhodelphis gene repertoire to red algae. We used the KEGG
Automatic Annotation Server™, using the bi-directional best hit, to functionally
annotate Rhodelphis genes, along with genes encoded by the red algae Cyanidioschyzon
merolae, Galdieria sulphuraria, Chondrus crispus and Porphyra purpureum.
The resulting KEGG Orthology assignments were used to infer the overlap or
difference in gene repertoire between Rhodelphis and red algae. Similarly, we used
OrthoFinder v.2.0.0% to assess the overlap in orthologous gene sets between the
same species (Extended Data Table 1c). Genome-based assessments of Rhodelphis
trophic mode were done with R. marinus and R. limneticus Transdecoder proteins
using PredictTrophicMode_Tool.R'2.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this paper.

Data availability

Raw transcriptome and genome reads from R. limneticus and R. marinus are deposited
in GenBank (PRJNA544719), along with full SSU rRNA gene sequences for
R. marinus (MK966712) and R. limneticus (MK966713). Assembled tran-
scriptomes and genomes, along with raw light and electron-microscopy images,
individual gene alignments, concatenated and trimmed alignments, single-gene trees,
and maximum-likelihood and Bayesian tree files for the 151-taxon and 153-taxon
datasets have been deposited in Dryad (https://doi.org/10.5061/dryad.tr6d8q2).
The family Rhodelphidae (urn:lsid:zoobank.org:act:80B5C004-2954-4A57-
A411-482BCD29E85D), genus Rhodelphis (urn:lsid:zoobank.org:act:6D09D4D9-
D9FC-4D0C-8FB2-55FDIDDEADS3) and species Rhodelphis limneticus (urn:lsid:
zoobank.org:act:695ACDOB-8151-4609-97FC-A044A312BE22) and Rhodelphis
marinus (urn:lsid:zoobank.org:act:84233191-4710-43D1-A2DA-914B8E7B7E01)
have been registered with the Zoobank database (http://zoobank.org/).

Code availability
All unpublished code is available upon reasonable request from the corresponding
authors.
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Extended Data Fig. 1 | Cell structure of R. limneticus. Related to

Fig. 1. a, b, Scanning electron microscopy images showing the flagella
and mastigonemes on the posterior flagellum. ¢, Section of an anterior
flagellum. d, Section of a posterior flagellum. e-g, Arrangement of the
transitional zone of a flagellum with transverse plate and cylinder.

h, Wide microtubular band 2 accompanies the posterior flagellum.

i-1, Cell sections from anterior to posterior. m, Single microtubules
inside the cytoplasm. n, A rhizoplast connects the basal body of the
posterior flagellum to the nucleus. o, Area of cell with nucleus, rudiments
of glycostyles inside the vesicles and smooth endoplasmic reticulum.
p, Contractile vacuole. q, Osmiophilic body. r, s, Phagocytosis of
eukaryotic prey and bacteria. t, Cell section showing food vacuole with

several engulfed bacterial cells. bc, bacterium; cl, cylinder; cv, contractile
vacuole; fv, food vacuole; gl, glycostyles; bbl, basal body of posterior
flagellum; bb2, basal body of anterior flagellum; mn, mastigonemes; mrt,
microtubule; n, nucleus; nmb, narrow microtubular band; ob, osmiophilic
body; pf, posterior flagellum; pr, eukaryotic prey; rgl, rudiments of
glycostyles; rp, rhizoplast; ser, sac of smooth endoplasmic reticulum;

sm, single microtubule; ss, striated structure; st, satellite of basal body;

tp, transverse plate; wmb1, wide microtubular band 1; wmb2, wide
microtubular band 2. Scale bars, 5 pm (a, b), 0.5 pm (¢, d, i-0), 0.2 pm
(e-h, q), 1 pm (p) and 2 pm (r-t). These experiments were repeated three
(a, b) and seven (c-t) times, with similar results.
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Extended Data Fig. 2 | Cell structure of R. marinus. a, b, Living cells,
obtained by light microscopy. ¢, Longitudinal section of the cell, d, Region
of the cell surface with glycostyles. e, Basal body of posterior flagellum
with outgoing fibrils and striated structure. f, Section of the flagellum
covered with glycostyles and dark granules. g, Emergence of a posterior
flagellum. h, Basal body of the posterior flagellum and mitochondrion
with tubular cristae. i, Formation of rudiments of glycostyles in
perinuclear space. j, Nucleus, mitochondrion and reserve substance.

fb, fibril; g, glycostyles; bb1, basal body of posterior flagellum; bb2,

basal body of anterior flagellum; mt, mitochondrion; mrt, microtubules;
n, nucleus, of, osmiophilic (dark) formation; pf, posterior flagellum;

rgl, rudiments of glycostyles; rs, reserve substance; ser, sac of smooth
endoplasmic reticulum; ss, striated structure. Scale bars, 10 um (a, b),

2 pum (c), 0.2 pm (d, e), 0.5 pm (f-i, k) and 1 pm (j). These experiments were
repeated ten (a, b) and three (c-k) times, with similar results.



LETTER

G 1

oo e

Angochromuina mara
LA, wperserim

Fedopediols dasica
Dictyochg spe
Pulagomonas calcooata
Aursococcus anophageters b e A mportorata
L, ;:;‘gﬁoméés%
Asteronalonas glacils o R RL ot _
Thafcsosia s g%”%?{ xlie Stramenopiles
ala:moswaps’eudonana T
i ) Tau
erseri7r Ao S50 comuum
! — = S Bosdonana
Stramenopiles e peras Jogatum
— TR
i
Adera torea
Ectocars Slcuiosus Bpesi
Sapraisanta parasiica Torapla g,
Phytopinor e Hera
SRR
Vil baceis
gy e
one Alveolata

e

Toapasna ot { el P
Tosmons priea 66
hromera Colpodella = R e, o
ggg;e el haane Rhizaria
Toidnans S "
e
il "’7"’"97’5”3%",5 e Archaeplastida

— A,A'lrammchymumlrms:mum
e
Catelona .
Blastocystis hominis|
Catetora rocbergonsss

Plasmodium faciparum
Babosia bov

Amphicinium cartorae
‘Noclluca sciians Alveolata
Hematoainiim sp
Ferkinaus marnus
Torapymen tomoptia
Platyophya macrosioma
Sl oo
Eipiotes

é?}

"‘o??mmmm lucimarinus

S T

= ; Protacruzia adherens
P Reticulomyxa filosa 9841 CYJW e G5t At onas abbreviata.
BT f B
itolonche serata - ™ o
Rhizaria B T i Snfersent Cryptista
ke ryp
T A
Foorh BiRcals

e
AR e,
w@; . Archasplastida

= wfwmpm Mss8a-11

Emiana uxls’;r
g, | Haptophyta

.
W“wmm e Haptophyta
=

e ELT
'—'_'—Mj"iié‘ggmi’”“‘w | Centrohelida

i

tva
Blachypodum ditacryon
Seiaginells mosleniori
Pryscomiolapaen T
Itus MMETSPO758
uu!'ﬂwiw‘é’ﬁg‘)zi iy

ENE B
rsagonas o | *
s e

. idoa
iopnys ambigua .
R.wvcrmpmys Grinaceoides Centrohelida
oanceysls p.
“Acaninocysts 5.
Ancoracysta st

Excavata

A

e e Archaeplasti
il iy rehaeplastida

St ps,

fX’ Tioridae
Dt

Temaiostells vt

C ‘:’v’%‘?ﬁ“s neoformans
- EOSEB TR s vt Obazoa
s pavons

Bl e
e
WWSV? 153/253 dataset (56,312 sites)
I a— IQ-TREE LG + C60 + F + G4

Porphyridium cruentum
=, oy seruineur
Madagascana eryiodiadoides

Coniomonss pacifca
"Roombia truncata pa
.« 2

Percolomonas cosmopolitus MMETSPO759
Fercatomona:

Naegiera gruberi 7 ] 4 \ )
55 Nooboco dosiis Excavata 5 p Archaeplastida
° o Rhodelphis + reds

S

— Cryptista + green and glauc.
Opisthokonta
Pico + Rhodelphis + reds

Redinomonas americana
Tsukubamonas iobosa

o
o

- s oot
Apeapors OWCTRRN o vassaccheromycss pombe

T

CFpiocbcus neoformans Obazoa
Prcomyes Bakesinss
e gt

e
P‘j"/::’;j:;srs%m 153/253 dataset (56,312 sites)
chosteln dscodeur
Acanthamoba castollani PhyloBayes CAT + GTR + G4
A
oo

Gl 0

g
% bootstrap support

n
a

03 0 10 20 30 40 50
Thousand sites removed

removal of the fastest evolving amino acid sites shows that both the

Rhodelphis and red algae and the picozoa, Rhodelphis and red algae

model as implemented in PhyloBayes. b, Maximum-likelihood tree using relationships are relatively robust to data removal. Similar to the 151/253

the LG + C60 + F + G4 model as implemented in IQ-TREE. Black dots dataset, support for Archaeplastida paraphyly (Cryptista, green plants and

denote full statistical support (Bayesian posterior probability = 1.0, glaucophytes (green and glauc.)) decreases with data removal, whereas

maximum-likelihood ultrafast bootstrap and SH-aLRT = 100%); support Archaeplastida monophyly support increases. Support for Opisthokonta
monophyly serves as a control for the presence of sufficient information

values <0.7/70% are not shown (indicated by ‘-’). ¢, Bootstrap support for
maximum-likelihood trees (PROT + CAT + LG + F) after progressive for phylogenomic inference.

Extended Data Fig. 3 | Phylogenomic analysis of the concatenated
153/253 dataset. a, Bayesian tree using the CAT + GTR evolutionary
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statistical support (maximum-likelihood ultrafast bootstrap and

SH-aLRT = 100%); support values <0.7/70% are not shown. The sister
relationship of Rhodelphis and red algae still receives full statistical support
with a highly reduced, phylogenetically well-supported dataset.
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photosynthesis model (b; n = 37 GO categories, 243 proteins). ¢, Heat
map of phagocyte GO terms showing (as in a) that Rhodelphis gene
repertoires are similar to phagocytes. Analyses were performed using
PredictTrophicMode_Tool.R.
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Extended Data Table 1 | Summary of Rhodelphis genome and transcriptome data

a
R. limneticus WGA assembly statistics
>0 bp >1000 bp >5000 bp >10000 bp >25000 bp >50000 bp
# contigs 54043 20225 7826 3768 655 54
Length 140673149 128280609 98710693 69888389 22743207 3260312
Largest contig (bp) 105305
Final len gth (>500 bp) 134325183
GC (%) 44.29
N50 10548
N75 4708
L50 3503
L75 8246
N’s per 100 kbp 51.04
b
Species # proteins BUSCO complete BUSCO fragmented BUSCO missing Mapped to genome # introns
R.marinus 14,585 90.7% 4.3% 5.0% N/A N/A
R.limneticus 13,346 82.5% 10.9% 6.6% 97% ~39.5k
c
Species R. marinus R. limneticus G. sulphuraria C. merolae C. crispus P. purpureum
# genes 14585 13346 7174 4803 9807 8355
# genes in OG 8800 7534 5329 3878 4699 5784
# unassigned genes 5785 5812 1845 925 5108 2571
% genes in OG 60.3 56.5 74.3 80.7 47.9 69.2
% unassigned genes 39.7 43.5 25.7 19.3 52.1 30.8
# OG with spec. 5487 5006 3717 3280 3367 4028
% OG with spec. 75.7 69 51.3 45.2 46.4 55.5
# spec-specific OG 16 10 7 7 10 6
# genes in spec-specific OG 62 69 83 37 60 30
% genes in spec-specific OG 0.4 0.5 1.2 0.8 0.6 0.4

a, Assembly statistics for the R. limneticus WGA dataset. HiSeq X 150-bp paired-end and MinlON reads were assembled with SPAdes v.3.11.1, the assembly (scaffolds) was decontaminated using
Autometa and assessed with QUAST v.5.0.2. N50 and N75 values refer to the shortest contig lengths that make up 50% and 75% of the genome assembly, respectively. L50 and L75 refer to the
smallest number of contigs that account for 50% and 75% of the assembly length, respectively. b, Summary of BUSCO reports for both Rhodelphis species based on decontaminated transcriptome
data. R. limneticus results are from a combination of single-cell and culture datasets. Percentage of transcripts mapping to the R. limneticus genome was determined with isoblat and introns were
inferred from GMAP alignments. High-quality R. marinus genome data were not generated before the death of the culture. ¢, Orthologous group (OG) distribution across red algae and Rhodelphis.
OrthoFinder v.2.0.0 was used to infer orthologous groups between proteins inferred from R. marinus and R. limneticus transcriptomes and red algal genomes. Rhodelphis genomes are gene-rich in
comparison to published red algal genomes, and retain components of evolutionarily conserved structures (such as flagella and centrioles) that have been lost in red algae. Species is abbreviated

as ‘spec’.
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have been deposited in Dryad (ACCESSION), along with raw light and electron microscopy images, individual gene alignments, concatenated and trimmed
alignments, and ML and Bayesian tree-files for the 151-taxon and 153-taxon datasets . Zoobank accessions are also provided for family
(urn:lsid:zoobank.org:act:80B5C004-2954-4A57-A411-482BCD29E85D), genus (urn:lsid:zoobank.org:act:6D09D4D9-DIFC-4D0OC-8FB2-55FD9DDEADS3), and species
(R. limneticus, urn:lsid:zoobank.org:act:695ACD0OB-8151-4609-97FC-A044A312BE22; R. marinus, urn:Isid:zoobank.org:act:84233191-4710-43D1-
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Study description In this study, we describe two species from a novel phylum of predatory eukaryotic microbes, Rhodelphidia. We performed detailed
ultrastructural, transcriptomic/genomic, and phylogenomic analyses, showing that Rhodelphis are the sister lineage to red algae, and
that they likely retain a non-photosynthetic plastid involved in heme biosynthesis.

Research sample This research describes two new species, Rhodelphis limneticus and R. marinus, from a new phylum of predatory eukaryotic
microbes that is the sister lineage to red algae. The organisms were collected from freshwater lake sediments and seawater
sediments, respectively.

Sampling strategy Sample size is not relevant to the present study.

Data collection Samples were collected from freshwater and marine sediments, and the new organisms were subsequently grown in the laboratory.
Microscopic data were recorded by D Tikhonenkov. Sequencing data were generated by the UCLA Clinical Microarray Core (R.
marinus), The Centre of Applied Genomics (Toronto, Canada; R. limneticus), and in-house using a minlON (F Husnik). Transcriptome/
genome data were assembled by R Gawryluk.

Timing and spatial scale  Sampling relevant to the present study was carried out only two times: once from marine coral sand off of a small island, Bay Canh,
near Con Dao Island, South Vietnam on May 3, 2015, and once from a near-shore freshwater sample on August 9, 2016. We had no
reason to expect to find the organisms that we did, so there is no specific rationale to sampling sites.

Data exclusions Sequencing data from prey organisms were excluded from the analyses as best as possible. To do this for transcriptomes (R.marinus
and R. limneticus), we subtracted transcripts derived from prey (kinetoplastids and co-cultured bacteria) from the total datasets. For
genomic datasets, we used automated binning (autometa) along with limited manual curation in order to reduce prey contributions
to the genome datasets. The raw data associated with this are still accessible in the raw read files deposited in the NCBI SRA
database.

Reproducibility Microscopic analyses were conducted several times. Phylogenomic analyses were carried out with a number of different approaches
(maximum likelihood, Bayesian etc.) and all associated datasets have been made available.

Randomization Randomization is not relevant to the present study because organisms were not allocated into groups.

Blinding Blinding was not relevant to the present study.

Did the study involve field work? ~ [X] Yes [ Ino

Field work, collection and transport

Field conditions Climatic conditions in the field were not recorded and are not relevant to the study.
Location 1) Bay Canh island near Con Dao Island, South Vietnam (8.666288 N, 106.680488 E).
2) Lake Trubin (flood-lands of Desna River, 51.397222 N, 32.368889 E), near Yaduty village,

Chernigovskaya oblast, Ukraine

Access and import/export Habitats were accessed via a motor boat (location 1) and a car (location 2). No permissions were required for sampling in the
selected sampling sites.

Disturbance No disturbances to the sites were caused; we sampled a small amount of water and sand/debris from a marine and lake habitat.
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We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
|:| Antibodies IZI |:| ChiIP-seq

IZI Eukaryotic cell lines IZI |:| Flow cytometry
|:| Palaeontology IZI |:| MRI-based neuroimaging
IZI Animals and other organisms
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Policy information about cell lines

Cell line source(s) Two clonal cultures of protists were isolated from marine coral sand and a freshwater sample containing organic debris.
Authentication Phase contrast light microscopy and 18S rRNA gene sequencing was used for authentication.
Mycoplasma contamination This is not relevant to protist cell culture.

Commonly misidentified lines  This is not relevant to protist cell culture.
(See ICLAC register)

Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals The study did not involve laboratory animals.
Wild animals The study did not involve wild animals (or any animals).
Field-collected samples Monoeukaryotic cultures of Rhodelphis marinus and R. limneticus were established by isolating cells with a glass micropipette.

Cultures were maintained at room temperature. R. marinus and R. limneticus were propagateed using the kinetoplastid protists
Procryptobia sorokini B-69 and Parabodo caudatus BAS-1 as prey, respectively. The kinetoplastids were grown in marine
Schmalz-Pratt’s medium and spring water and preyed upon Pseudomonas fluorescens.

Ethics oversight No ethical approval was required. The organisms described here are novel eukaryotic microbes (protists) that feed on other
protists and pose no risks.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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