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Abstract
The Pacific coastal temperate rainforest (PCTR) is a global hot-spot for carbon cycling and export. Yet the influence of
microorganisms on carbon cycling processes in PCTR soil is poorly characterized. We developed and tested a conceptual
model of seasonal microbial carbon cycling in PCTR soil through integration of geochemistry, micro-meteorology, and
eukaryotic and prokaryotic ribosomal amplicon (rRNA) sequencing from 216 soil DNA and RNA libraries. Soil moisture
and pH increased during the wet season, with significant correlation to net CO2 flux in peat bog and net CH4 flux in bog
forest soil. Fungal succession in these sites was characterized by the apparent turnover of Archaeorhizomycetes phylotypes
accounting for 41% of ITS libraries. Anaerobic prokaryotes, including Syntrophobacteraceae and Methanomicrobia
increased in rRNA libraries during the wet season. Putatively active populations of these phylotypes and their
biogeochemical marker genes for sulfate and CH4 cycling, respectively, were positively correlated following rRNA and
metatranscriptomic network analysis. The latter phylotype was positively correlated to CH4 fluxes (r= 0.46, p < 0.0001).
Phylotype functional assignments were supported by metatranscriptomic analysis. We propose that active microbial
populations respond primarily to changes in hydrology, pH, and nutrient availability. The increased microbial carbon export
observed over winter may have ramifications for climate–soil feedbacks in the PCTR.

Introduction

Soils of the Pacific coastal temperate rainforest (PCTR) of
North America sequester globally important amounts
of carbon (~198–900Mg C ha−1) [1] and contribute some of
the highest rates of dissolved organic carbon (DOC) export
to coastal margins in the world (10.5–29.9 g Cm−2 y−1)
[2]. Soil CH4 fluxes in the PCTR range from uptake
(0.05–0.55 mg Cm−2 h−1) in upland forests to strong
emissions (0–1.08 mg Cm−2 h−1) from ombrotrophic peat
bogs [3]. Microbial communities regulate the flow of
carbon through coastal ecosystems via decomposition
of plant biomass [4, 5], yet the controls on microbial carbon
cycling in hydric soils, such those in the PCTR, are little
understood.

Nutrient limitation, low O2, and acidic soil in the PCTR
restrict organic matter degradation [6]. The carbohydrate-
active enzymes (CAZy) database [7] can facilitate investi-
gation of carbon cycling in soil communities [8, 9], and
reveal the flow of carbon and energy through peatlands
from biopolymer degradation to C1 metabolism [10].
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It remains to be seen how environmental conditions in
distinct seasons and ecohydrological classes affects micro-
bial organic matter degradation and carbon cycling.

Anaerobic metabolic pathways play a major role in the
mineralization of organic carbon in waterlogged soils.
Anaerobic degradation in these environments can overcome
thermodynamic limitations through the maintenance of
low H2 concentrations by coupling fermentation by sulfate-
reducing bacteria (SRB) to the reduction CO2 to CH4

by hydrogenotrophic methanogens [11, 12]. This syntrophic
interaction is a major component of metabolism in
anaerobic bog soil [13], which may be stimulated by winter
precipitation in the PCTR. Quantifying carbon balance
due to these processes is imperative for reconciling annual
terrestrial carbon budgets.

Quantifying active microbial populations can reveal
how communities respond to changing environmental
conditions and contribute to nutrient cycles. However,
limitations of methods of assessing active microbial groups
must be addressed. Sufficient mRNA is difficult to extract
and purify from high-organic soils. Ribosomal RNA
(rRNA) can be recovered using high-throughput methods,
but cellular concentration is not well correlated with growth
rates in mixed communities [14]. Further, dormant cells
can contain detectable rRNA [15]. Yet, rRNA analysis
can potentially reduce bias due to dead or dormant cells
[16]. As ribosome concentration indicates potential for
protein synthesis and thus cellular activity, the analysis
of rRNA may provide ecologically-meaningful insights
into dynamics of putatively active microbial community
members [10, 17–19].

To characterize in situ total (DNA libraries) and puta-
tively active (rRNA libraries) microorganisms and their
role in DOC, CO2, and CH4 cycling and export we
sequenced amplicons of archaeal and bacterial 16S rRNA,
fungal ITS, and eukaryotic 18S rRNA (focused on soil
protists). Metatranscriptomics (mRNA) validated phylotype
functional assignment. We hypothesized that soil conditions
in distinct ecohydrological classes (peat bog and bog
forest) would structure total microbial communities (H1);
that putatively active microbial populations would addi-
tionally respond to micro-climactic variables in distinct
seasons (H2); and that winter periods would increase
anaerobic metabolic processes leading to increased net
CH4 flux (H3). We demonstrated seasonal differences in
the structure of putatively active microbial community
members, including a response to previously uncharacter-
ized increased pH and inorganic nitrogen concentrations
in winter, resulting in enhanced net flux of both CO2

and CH4. Together, these data allowed us to develop
and assess a conceptual model of seasonal changes in
microbial carbon cycling in major PCTR ecohydrological
classes (Fig. 1a).

Material and Methods

Study location and site description

The Calvert Island Field Station is located on an outer-
coast island in the Perhumid PCTR (Supplementary
Figure 1), in the very wet hypermaritime coastal western
hemlock zone (CWH vh2) zone [20]. The bog forest
site (TSN2; N51°39′08″, W128°07′47″) is within CWH
vh2 site series 11. It contained shallow, nutrient poor
organic soils (80–125 cm depth) with distinct L, F,
and H layers over Of, Om layers, and some unstructured
mineral material. The primary canopy contains Pinus
contorta, Chamaecyparis nootkatensis, and Thuja plicata.
The deep, ombrotrophic peat bog site (TSN3; N51°39′05″,
W128°07′43″) is in BEC CWH vh2 site series 32. It
contained deep (>2 m) peat-derived organic soil, with
sparse P. contorta, C. nootkatensis, and T. plicata and
abundant ericaceous shrubs on Sphagnum spp. lawns and
hummocks. We use the term ecohydrological class for
these sites to distinguish areas of discrete vegetation, soil
depth, soil type, and hydrology. Peat bog and bog forest
sites were chosen on the basis of terrestrial ecosystem
mapping methods, to target ecohydrological classes that
are prevalent in the PCTR [21].

Terrestrial sensor nodes

Both sites contained: an HC-S3 air temperature and relative
humidity probe and a TB4 rain-gauge controlled with a
CR1000 datalogger (Campbell Scientific (Canada) Corp.,
Edmonton, Canada) and powered by solar arrays. Three
subplots per site each contained: three 109-L soil tem-
perature probes (Campbell Scientific (Canada) Corp.), three
platinum soil redox potential probes with XR300 Ag/AgCl
Reference Electrodes (Radiometer America Inc., Brea,
USA). Soil temperature and redox potential probes were
placed at depths of 10, 25, and 40 cm in the bog forest
site and 10, 20, and 30 cm in the peat bog site, with the
depths corresponding to approximate median water table
depth and the bounds of annual water table variability.

Soil, water, and gas sampling and analysis

On June 18, 2015 (early summer), July 23, 2015, July 25,
2015 (summer), October 28, 2015 (fall), February 28, 2016
(winter), and April 18, 2016 (spring), soil was sampled in
each subplot at depths corresponding to sensor placement,
using a screw auger and peat coring device. Two cores per
subplot were pooled to give 216 total soil samples analyzed
for this work. Subsamples (5 g) for DNA and RNA
extraction were immediately frozen on dry ice. Frozen soil
was transferred to a V900 CryoPro Vapor Shipper (VWR
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International, Radnor, USA) (<−150 °C) for transport and
stored at −80 °C. Soil was measured for gravimetric soil
water content and pH (1:1 H2O), and sent to the British
Columbia Analytical Laboratory in Victoria, BC for total C,
N, and S, NO3-N, NH4-N, available P, cation concentrations
and effective cation exchange capacity (CEC). Syringe-
filtered (20 μm) soil water was sampled at 30 cm depth
from pan lysimeters and at 75 cm using piezometers and
measured for DOC and specific ultraviolet absorbance at
254 nm. See Supplemental methods and Oliver et al. [22] for
details. GC-based measurements of CH4 fluxes used large-
diameter, 8.4-l fan-mixed polyvinyl chloride chambers as in

Christiansen et al. [3]. Totally, 12 ml headspace air was
removed every 15 min for 1 h and stored in 6-ml exetainers
(LabCo Ltd., Lampeter, Wales). For analysis, 2.5 ml was
manually injected into a 5890 Series II gas chromatograph
(Agilent Technologies, Santa Clara, USA) equipped with
a flame ionization detector and electron capture device.

Soil nucleic acid extraction and amplicon
sequencing

DNA was extracted with PowerSoil DNA Isolation kits
(MoBio Laboratories, Inc., Carlsbad, USA) with 0.25 g
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Fig. 1 Temperate rainforest ecohydrology and seasonal conditions.
a Conceptual model of seasonal and ecohydrological effects on
carbon flux in a temperate rainforest landscape, including carbon pool
and net gas flux ranges. Range (min to max) provided for key mea-
surements. Major changes between dry and wet periods are indicated
with arrows shaded by effect type: blue arrow, carbon concentration
or flux rate; green arrow, relative abundance of putatively-active
microbial groups. Arrows facing up indicate net positive change
from dry period to wet period. Ecohydrological sites correspond to
typical landscape positions, with bog forests occupying poorly
drained slopes and ombrotrophic peatlands occupying flatter sites
on higher slope positions. b Mean monthly DOC flux from seven
adjacent watersheds averaging 6.7 km2 (data from [22]). c Soil

microclimate variables: mean monthly temperature, air temperature
at sampling; mean monthly rainfall, 24-h rainfall at sampling, mean
monthly water table depth (WTD), WTD at sampling. d Soil chemistry
variables which did not have a significant seasonal variation compo-
nent (Supplementary Figure 3) provided by depth and ecohydrology
(site). Variables with significant seasonal effects provided as the
mean of three depths. e Mixed-chamber net soil CO2 and CH4

flux. Samples corresponding to soil microbial sampling highlighted
in gray. Full soil microclimate, chemistry, DOC, and gas flux data,
and analysis in Supplementary Figures 2–6. p Values following
ANOVA are denoted by asterisks for differences between bog
forest and peat bog sites at each date or depth (*p < 0.05)

952 D. J. Levy-Booth et al.



frozen soil. RNA extraction used a protocol modified from
Griffiths et al. [23]: 0.5 g of frozen soil was subject to
bead beating twice in lysing matrix E (MP Biomedicals
LLC, Santa Ana, USA) containing 0.35 ml 240 mM phos-
phate buffer (pH 8.0), 0.15 ml 10% CTAB buffer (pH 8.0),
and 60 µl of 200 mM AlNH4(SO4)2. Following phenol-
chloroform extraction and RNA capture column (MoBio
Laboratories, Inc.) purification, DNA was removed with
Turbo DNase (Life Technologies Corp., Carlsbad, USA)
treatment (confirmed by 16S rRNA qPCR). DNA and RNA
concentrations were determined using a Qubit™ 3.0 Fluo-
rometer (Thermo Fisher Scientific Inc., Waltham, USA).
cDNA synthesis for amplicon library generation used the
SuperScript® IV First-Strand Synthesis System (Thermo
Fisher Scientific Inc.). Amplification sequencing of pro-
karyotic 16S-V4 small subunit ribosomal RNA (SSU
rRNA) and the fungal internal transcribed spacer (ITS)
region was conducted by Microbiome Insights Inc. (Van-
couver, CAN) using primers 515F/806R [24] following
earth microbiome project (EMP) protocols [25]. The
fungal ITS V2 region was amplified using primers ITS4/
fITS7 with dual-index 8-nt barcodes [26]. Illumina
MiSeq V3 300bp-PE sequencing of eukaryotic 18S-V4
SSU rRNA was performed at the Centre for Comparative
Genomics and Evolutionary Bioinformatics (Halifax,
CAN). A total of 314 DNA libraries and 211 RNA libraries
were prepared (Supplementary Table 1). Quality filtering,
phylotypes selection and annotation for 16S and 18S rRNA
amplicon sequences was informed by EMP guidelines [25]
and the open-reference pipeline in QIIME 1.9.1 [27].
Fungal ITS sequence processing used the default PIPITS
pipeline [26].

Metatranscriptomes

Shotgun mRNA sequences were recovered from 10 out of
12, 10 cm samples in July and Oct 2015, including three
bog forest and three peat bog samples from July 23, 2015,
as well as two bog forest and two peat bog metatran-
scriptomes from October 28, 2015. Sufficient mRNA was
not recovered from deeper samples or from 2016 samples
(Supplementary Table 1). Metatranscriptomes were
sequenced by The McGill University and Génome Québec
Innovation Centre (Montreal, CAN) following application
of Ribo-Zero rRNA Removal Kit (Bacteria) (Illumina)
using HiSeq2500 125bp-PE. Filtering, clustering and
annotation used established pipelines [28].

Statistical approach

All statistical analysis was performed using R 3.2.4. (R Core
Team, 2016). Negative binomial normalization of count
data using DeSeq2 1.18.1 [29] was applied to avoid biases

associated with rarefaction [30]. Amplicon sequences were
clustered as phylotypes sharing 97% identity. Distance-
based redundancy analysis (db-RDA) models were reduced
using forward variable selection only if full model p < 0.05.
Phylotype and KO network correlations were calculated
using an ensemble of Compositionality Corrected by
REnormalization and Permutation (CCREPE)-corrected
Pearson and Spearman correlations (p < 0.001) after false
discovery rate correction [31] using ccrepe 1.12.1. Addi-
tional details are provided in Supplementary Methods.

Results and discussion

Gaseous carbon fluxes correlated with increasing
soil moisture, pH, and nutrient availability during
wet periods

Several interconnected seasonal soil micro-meteorological
and geochemical trends emerged that were prospectively
linked to shifts in microbial community structure and
function. High-fall precipitation (306 mm in Oct 2015)
(Fig. 1c) elevated the soil water table (Fig. 1c) and gravi-
metric soil moisture (Supplementary Figure 2). Monthly
DOC flux to the marine environment increased from around
0.5–3.35 g m−2 between dry and wet seasons in 2015 [22]
(Fig. 1b). Soil DOC concentration and aromaticity mea-
surements were inconsistent (Supplementary Figure 3).
Toxicity of Sphagnum-derived aromatic DOC can suppress
microbial activity including sulfate reduction and metha-
nogenesis [32]. Anoxic conditions in bogs due to heavy
precipitation can reduce activity of plant-biomass degrading
enzymes including phenol oxidases. However, rewetting
following drought can counterintuitively stimulate micro-
bial activity in peat soil via depletion of acidic Sphagnum
DOC along with alleviation of pH stress [6]. Similar DOC
flux patterns have been recorded elsewhere in the PCTR [2],
with higher and more bioavailable DOC exported from
watersheds with a high proportional area of wetlands
including bogs [33]. This could indicate differences in
quantity and quality of DOC between Sphagnum bogs and
forests, as well as potential differences in microbial
processing.

Soil pH rose from 3.35 ± 0.04 in July 23, 2015 to 4.61 ±
0.03 in Feb 28, 2016. Elevated water tables during the
wet period (Supplementary Figure 2) likely contributed
to the significant temporal component of soil pH variation
(68.1%, p= 0.001) (Fig. 2), possibly via removal of acidic
DOC or depletion of electron acceptors under anaerobic
conditions. Soil pH is a major driver of microbial commu-
nity structure [34, 35]. Alleviation of pH-related stress
in acidic forest soils can rapidly increase protein synthesis
and growth [36], microbial DOC metabolism [37, 38],
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and respiration rates in soil bacteria [39]. Increasing pH
(e.g., through liming) can reciprocally increase NH4-N
concentrations in acidic soil [37]. NH4-N concentrations
also varied between dates (19.4%, p= 0.02) (Fig. 1d,
Supplementary Figures 4, 5). However, soil redox potential
stayed relatively stable (Supplementary Figure 2),
responding primarily to depth and precipitation events.

Of the dates with both gas and soil sampling, net CO2

flux rates peaked at 2.1 ± 0.17 mg CO2-C m−2 h−1 in
Feb 2016 in the bog forest site, an increase of 132.0%
over rates on July 23, 2015 (Fig. 1e). Net soil CO2 flux
rates were significantly different between dates based on
linear mixed effects (lme) ANOVA (p= 0.0004) (Supple-
mentary Table 2) and canonical variation partitioning
(57%, p= 0.001) (Fig. 2). In contrast, net CH4 flux rate
varied by site following canonical variation partitioning
(25%, p= 0.002) (Fig. 2). When divided by site, net CH4

flux rate also displayed a significant date effect in the
bog forest site (p= 0.0005) (Supplementary Table 2). High
net CO2 flux rates were also observed during the 2018
wet period (Fig. 1e). Net CH4 flux rates in peat bog soil
were highest in Feb 2016, with a rate of 0.01 ± 0.011 mg
CH4-C m−2 h−1. Bog forests exhibited net atmospheric CH4

uptake, which increased 611.6% between July 23, 2015 and
Feb 28, 2016. Additional gas flux analysis in 2017 and
2018 shows that CO2 and CH4 fluxes were highly variable,
with higher rates occurring later in the wet season in these
years than in 2016. N2O fluxes were generally minimal
(Supplementary Figure 7). While the contrast between wet
and dry season soil respiration appears consistent with a
seasonal effect, CO2 flux varied substantially within sea-
sons, suggesting a response to rapidly changing weather

conditions (i.e., coastal storm events) that have the potential
to rapidly alter carbon fluxes in these ecosystems. Impor-
tantly, however, the use of 1-h chamber-based flux mea-
surements may miss important sources of variation.

Net gas fluxes appeared to respond to different factors
across ecohydrological sites. Bog forest CO2 flux variation
was explained by pH (28.8%, p= 0.001) and redox
potential (3.4%, p= 0.038), while peat bog CO2 flux var-
iation was explained by soil moisture (65.0%, p= 0.001),
total carbon (16.5%, p= 0.001), available phosphorus
(5.2%, p= 0.001), and NO3-N (4.2%, p= 0.007) (Supple-
mentary Figure 6A). In nonhydric temperate soils, high-soil
water content generally suppresses respiration [40]. Bog
forest CH4 flux variation was explained by pH (36.7%, p=
0.001) and NO3-N (2.5%, p= 0.047), and peat bog CH4

flux variation by soil moisture (45.8%, p= 0.001), water
table depth (12.3%, p= 0.002) (Supplementary Figure 6B).
These data suggest functional changes in the bog forest site
due to pH, and in the peat bog site due to hydrology, with
nutrient availability having minor effects.

In temperate bog and fen soils, respiration and CH4

fluxes increased when pH was increased in the range
observed in this study (~3.5–4.5) with CH4 fluxes being
436% more sensitive to pH increase than CO2 fluxes [41].
Although, others found little effect of pH on soil respiration
[42]. While we did not directly measure the contribution of
plants to microbial activity or soil gas flux, belowground
carbon allocation by plants contributes to respiration rates
[43] and seasonal CH4 flux rates [44]. Further, seasonal
changes in temperate forest resource allocation can shift soil
microbial activity in winter toward degradation of complex
carbon substrates [45]. While PCTR CH4 fluxes are poorly
characterized, seasonal flux rates can be weakly correlated
to the ratio of total methanotoph pmoA gene copies to
methanogen mcrA gene copies across an ecohydrological
gradient (R2= 0.21) [3], and, strongly to water table depth
(R2= 0.78) [46].

Nitrogen can have variable effects on net methane flux
rates in soil. Inorganic forms can inhibit or stimulate both
methanotrophy [47] and methanogenesis [48–51]. NH4-N can
inhibit methanotrophy [52] by being selectively bound by the
PMO enzyme in place of CH4 [53]. NO3-N can inhibit
acetoclastic methanogenesis due to competition from deni-
trifers [54]. However, nitrogen availability in soils can sti-
mulate methane production or oxidation due to the alleviation
of limitations, e.g., on protein synthesis, or switching from
“metabolically expensive” nitrogen fixation to endogenous
nitrogen resources [47, 49, 55, 56]. In nitrogen-limited peat-
lands, experimental nitrogen addition can increase net CO2

and CH4 flux rates [57]. In our soil system NO3-N was
weakly correlated to net CH4 flux rates. The seasonal
dynamics of methane cycling populations can potentially
reveal the mechanism of nitrogen effects on net CH4 fluxes.
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Microbial communities in rRNA-libraries shift with
microclimate changes and nutrient availability in
contrasting seasons

Microbial communities extrapolated from DNA and RNA
amplicon libraries differed following PERMANOVA,
with the highest dissimilarity observed for bacterial 16S
rRNA libraries (R2= 0.15, p= 0.001) and lowest for
fungal ITS libraries (R2= 0.05, p= 0.001) (Supplementary
Figures 8 and 9). Extraction protocols did not appear
to influence community composition (Supplementary Fig-
ure 10). Total C, available P, and NH4-N were significant
sources of variation following regression of total fungal,
protist, archaeal and bacterial Bray–Curtis dissimilarity
matrices (Fig. 3). Eukaryotic and prokaryotic community
structure in DNA libraries were also influenced by micro-
climactic conditions and total S, respectively. Depth was
a significant source of variation in all communities and
library types, with site as a secondary factor. These results
support the expectation that ecohydrological sites would
support distinct microbial communities (H1). All commu-
nities in RNA libraries were significantly structured by
date. This observation supports H2, as potentially active
community structure was influenced by temporal variations
to a greater extent than total community structure from
DNA libraries.

To further understand seasonal dynamics of highly
abundant microbial taxa, the 5% most-abundant fungal,
protist, archaeal, and bacterial phylotypes (66% of sequence
counts) were tested for variation sources and environmental
correlations. Fungal ITS communities consisted of few,
highly abundant taxa. Archaeorhizomycetes accounted for
41% of all ITS counts following DeSeq2 normalization,
yet decreased 99.4% in DNA libraries from Oct to
April (Fig. 4). Season explained 44.1% (p= 0.002) and
36.2% (p= 0.002) of variation in Archaeorhizomycetes
and Archaeorhizomycetes SH203824.07FU phylotype
abundance, respectively. Abundance of SH203824.07FU
was positively correlated to soil temperature (r= 0.54,
p < 0.0001) and negatively to pH (r=−0.31, p= 0.002),
indicating adaptation to habitats with pH < 4.0. Similar
trends were observed in rRNA libraries (Supplementary
Figure 11). Archaeorhizomycetes are probable saprotrophs
found in conifer rhizospheres and are able to metabolize
simple sugars, plant root exudates, and cellulose [58].
Their previously described seasonality [59] could be
linked to alterations in soil DOC content as well as plant
growth, exudation, and biomass degradation. In contrast,
putatively saprotrophic Ascomycetes in the order Helotiales,
which have been shown to be abundant in arable soils
with pH < 5.0 [35], appeared to respond positively to pH,
indicating possible pH-driven seasonal succession in fungal
communities. Nonfungal Eukaryotes are an oft-neglected

component of the total microbial community. The high
proportion of bacterial-feeding rhizarians was described
previously in the Sphagnum moss cover of coastal bogs
[60]. The potential seasonal reduction in protist groups
could have repercussions throughout the microbial food
web due alleviation of predation over winter.

Abundance of 14 of the top 24 prokaryotic phylotypes in
RNA libraries increased during wet periods in response to
pH, nitrogen concentrations, and DOC concentrations
(Fig. 5). Phylotypes showing seasonally dynamic putative
activity include groups carrying out the linked reduction
of SO4 and production of CH4: Syntrophobacteraceae,
Methanoregula, and Methanomassiliicoccaceae [13, 61–
64]. Abundance of active Methanomicrobia was positively
correlated to NH4-N concentration (r= 0.50, p < 0.0001),
and to CH4 efflux rates (r= 0.46, p < 0.0001). The pro-
portional increase in sulfate-reducing and methanogenic
taxa with inorganic nitrogen could indicate direct or indirect
stimulation of these groups. The mechanism elevating
NH4-N concentrations during the wet season are unknown.
Waterlogged peat soils are thought to suppress nitrogen
mineralization [65] and nitrification [66]. It remains to be
seen if the proposed die-off of Archaeorhizomycetes
and other Eukaryotic microorganisms provides a source
of NH4-N during winter.

Archaeal and bacterial phylotypes in DNA libraries did
not display significant seasonal effects, with the abundance
of only one of the top 24 phylotypes significantly influenced
by season (Supplementary Figure 12). Bacterial phylotypes
in DNA libraries show near-unanimous positive correlations
with redox potential, CEC, CN ratio, and available PO4-P,
supporting db-RDA results (Fig. 3). This demonstrates
that seasonal changes in PCTR soils do not greatly affect
the total prokayrotic community composition. In support
of H3, which predicted increased anaerobic metabolism
during wet periods, it is likely that changes in soil function
could be associated with changes in the proportion of
putatively active community members including anaerobic
bacteria and archaea, rather than total community compo-
sitional shifts.

Network analysis of microbial communities can elucidate
potential metabolic interactions [67, 68] or habitat pre-
ferences [69]. Positive correlation of putatively active
microbial populations, “co-activity”, does not necessitate
biological interaction, although it can determine what bio-
logical interactions are possible [70]. Phylotypes show
distinct clustering by the depth and ecohydrological site in
which each taxon was maximally abundant (Fig. 6). Clus-
ters 2 and 6 contained diverse heterotrophic Alphaproteo-
bacteria, Acidobacteria, Bacteroidetes, Verrucomicrobia,
and several Burkholderia species. Clusters 3 and 5 were
comprised of loosely correlated fungal phylotypes including
Archaeorhizomyces, with cluster 5 differentiated by positive

Seasonal and ecohydrological regulation of active microbial populations involved in DOC,. . . 955



Fi
g.

3
D
is
ta
nc
e-
ba
se
d
re
du

nd
an
cy

an
al
ys
is
(d
b-
R
D
A
)
of

B
ra
y–
C
ur
tis

di
ss
im

ila
rl
y
fo
r
a
fu
ng

al
IT
S
,b

pr
ot
is
t1

8S
rR
N
A
ge
ne
,c

ar
ch
ae
al
16

S
rR
N
A
ge
ne

an
d
d
ba
ct
er
ia
l1

6S
rR
N
A
ge
ne

ph
yl
ot
yp

es
in

D
N
A
lib

ra
ri
es
,a
nd

e
fu
ng

al
IT
S
,f

pr
ot
is
t1

8S
rR
N
A
,g

ar
ch
ae
al
16

S
rR
N
A
,h

ba
ct
er
ia
l1

6S
rR
N
A
in

R
N
A
lib

ra
ri
es

at
B
og

F
or
es
t(
T
S
N
2)

an
d
P
ea
tB

og
(T
S
N
3)

si
te
s
co
ns
tr
ai
ne
d
by

so
il
ch
em

is
tr
y

an
d
cl
im

at
e
va
ri
ab
le
s.

M
od

el
an
d
ax
is

si
gn

ifi
ca
nc
e
de
te
rm

in
ed

by
R
D
A

A
N
O
V
A
.
V
ar
ia
bl
e
si
gn

ifi
ca
nc
e
(b
ar
gr
ap
hs
)
w
as

de
te
rm

in
ed

by
P
E
R
M
A
N
O
V
A
,
sh
ow

n
as

ad
ju
st
ed
-R

2
fo
llo

w
in
g

P
E
R
M
A
N
O
V
A

by
ca
te
go

ri
ca
l
va
ri
ab
le
s.
p
V
al
ue
s
ar
e
de
no

te
d
by

as
te
ri
sk
s
(*
p
<
0.
05

,*
*p

<
0.
01

,*
**
p
<
0.
00

1)
.T

C
to
ta
lc
ar
bo

n,
T
N
to
ta
l
ni
tr
og

en
,T

S
to
ta
l
su
lf
ur
,C

N
ca
rb
on

:n
itr
og

en
ra
tio

,A
P

av
ai
la
bl
e
ph

os
ph

or
us

956 D. J. Levy-Booth et al.



correlation with available phosporus (Supplementary
Figure 13). Cluster 4 included strongly correlated Enter-
obacteriaceae and Clostridia, positively correlated with
pH. Cluster 1 could be divided into two subclusters that
respectively contained the two largest bacterial populations:
Beijerinckiaceae and Koribacteraceae (10.4% and 12.5%
of bacterial rRNA reads, respectively).

The Beijerinckiaceae, which includes obligate and
facultative methanotrophs [71, 72], are positively correlated
with other closely related alphaproteobacterial obligate
aerobic methanotrophs: the Methylocystaceae (r= 0.84,
p < 0.0001), including Methylosinus sp. (r= 0.72, p <
0.0001) [73]. Some members of families Beijerinckiaceae
and Methylocystaceae are able to grow on short-chain fatty
acids (SCFA) [72, 74] in addition to CH4. Both gamma-
proteobacterial and alphaproteobacterial methanotrophs
are abundant and active methane oxidizers in peat soils [75].
Both groups were detected in PCTR soil, but alphaproteo-
bacterial methanotrophs were 6.3 × 103 and 1.2 × 105 times
more abundant than gammaproteobacterial methanotrophs
(e.g., Methylomonas sp.) in DNA and RNA libraries,
respectively. Dominant methanotrophs had relatively static
populations, with relative abundances in RNA libraries
exceeding those in DNA libraries (Supplemental Figure 11).
Beijerinckiaceae also correlated with Hyphomicrobiaceae
(r= 0.75, p < 0.0001), which exhibit slow, aerobic growth

on acetate, pyruvate or C1 compounds [76], as well as
several groups of SRB including Syntrophobacteraceae
[77, 78]. These organisms reside in subcluster 1A, appar-
ently capable of a mix of dissimilatory sulfate-reducing
or aerobic C1/SCFA metabolism, highlighting an apparent
major biological pathway of carbon and energy flow
through PCTR soil ecosystems.

Koribacteraceae positively correlated with Syn-
trophobacteraceae (r= 0.64, p < 0.0001), with the hydro-
genotrophic/CO2 methanogenic genus Methanoregula (r=
0.67, p < 0.0001) [61], and with Methanomassiliicoccaceae
(r= 0.61, p < 0.0001), including members that can reduce
methanol to CH4 [64, 79]. The metabolism of Koribacter-
aceae is not well-understood [80], but sequenced genomes
reveal acidophilic organisms containing cellulases, hemi-
cellulases, polysaccharide lyases, and pectin esterases sui-
table for plant-biomass degradation. While Koribacter sp.
carbon monoxide oxidation is a hypothesized energy source
under thermodynamically limited conditions [81], no Kor-
ibacter carbon monoxide dehydrogenase transcripts were
detected in soil metatranscriptomes. Due to their population
size and position within the network, it is possible that
Koribacteraceae play an undefined role in coupling bio-
polymer degradation to hydrogenotrophic methanogenesis.
The positive correlation between Syntrophobacteraceae and
hydrogenotrophic Methanomicrobia (r= 0.92, p < 0.0001)
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likely reflects syntrophic metabolism [13]. The dominant
phylotypes in PCTR soil are abundant and widespread in
peat soil [10, 82–85], highlighting that the potential ecolo-
gical relationships important to organic carbon metabolism
at our sites are likely shared with acidic peat ecosystems
throughout the world.

Metatranscriptomic analysis was used to validate taxon-
based functional assignment of phylotypes and elucidate
potential functional consequences of populations shifts
found in the DNA and RNA amplicon libraries. The high
DOC content of PCTR soil (up to 98 mg L−1) prevented
mRNA extraction and purification from many samples
(See Supplementary Table 1 for mRNA sample origins).
About 2.6% of the 23.8 million unique transcripts were
annotated as CAZy families (Supplementary Figure 13),
while CAZymes accounted for about 0.6–0.8% of reads
in similar bog systems [86], highlighting the importance
of organic decomposition in these soil communities.
Forest soil metagenomes from throughout North America
had an average CAZy family richness of 235 in metagen-
omes [9], while Russian peat metatranscriptomes had
a richness of 226 of the equivalent CAZy families [10].
Our soil metatranscriptomes had a CAZy richness of

259 families. Fungal GMC oxidoreductases (AA3) were
the most abundant of the AA class transcripts (31–35%),
lower than their 51–65% relative abundance upland forest
metagenomes [9]. Bacterial expression of AA1 laccase,
ferroxidase and multicopper-oxidase was observed, sug-
gesting that bacteria have substantial capacity for oxidative
decomposition in these soils. 1,4-benzoquinone reductase
(AA6) and Cu-dependent lytic polysaccharide mono-
oxygenases (LPMOs) (AA10) enzymes showed high
sequence similarity to those in Ascomycota, Plantomycetes,
and Acidobacteria (including Koribacteria sp.). AA6 and
AA10 are capable of oxidizing aromatic compounds [87],
and chitin and cellulose [88], respectively. Highly expressed
AA11 LPMOs were primarily assigned to filamentous
Ascomycota including Neurospora crassa and Thielavia
terrestris, which are capable of hydrolyzing all major
polysaccharides found in biomass [89, 90]. Actinobacterial
transcripts were abundant in CAZy profiles (Supplementary
Figure 13) despite the low relative abundance of Actino-
bacteria in rRNA profiles (Supplementary Figure 10).
Archaeorhizomycetes are poorly represented in non-
redundant protein libraries [91]. Nevertheless, these data
support the previous finding that acidic peat bogs and
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coastal forest litter selects for predominantly Ascomycota,
Actinobacteria, Acidobacteria, and Alphaproteobacteria
biomass degraders [10, 17, 19, 86].

Transcripts that serve as “markers” for key soil geo-
chemical transformations are denoted by their KEGG
ortholog (KO) number (Fig. 7a). Only 7.4% the 6.1 million
reads mapping to 11 202 KOs could be annotated to
species level. Of these, transcripts in the nitrogen-fixation
operon (nifDHK) were most abundant from the Beijer-
inckiaceae methanotroph Methylocella silvestris (n= 14),
the metabolically diverse methanogen Methanosarcina
(n= 14) and the SRB Syntrophobacter fumaroxidans (n=
12), the latter of which was also associated with sulfite
reductase (dsrAB) expression (n= 19). Particulate methane
monooxygenase (pmoABC) transcript sequences most
closely aligned with alphaproteobacterial Methylocystis
parvus (n= 14) and Methylosinus sp. (n= 13), and with
gammaproteobacterial Methylococcus capsulatus (n= 36)
and Methylomonas methanica (n= 2). Methyl-coenzyme

M reductase (mcrABGC) operons were expressed in
Methanosarcina (n= 4) and in the hydrogenotrophic
Methanocella conradii (n= 29) and Methanoregula
boonei (n= 14). Denitrification (n= 199) genes were
phylogenetically diverse. Abundant Gammaproteobacteria
methanotroph transcripts were identified, in contrast
with their low detection in ribosomal amplicon libraries.
Metatranscriptomic analysis otherwise confirmed assump-
tions of the metabolic functions of key phylotypes.
Similarly, correlations between taxa (Fig. 6) are reflected
in the transcript co-expression network (Fig. 7b), showing
strong positive correlations between pmoABC, mcrABGC,
and dsrAB, and with denitrification genes. The abundance
of transcripts in CO2-, N-, and S-reduction pathways
at 10 cm depth reflects substantial cryptic methanogenesis
[92] and other anaerobic processes [93] that can occur
in oxic soil.

In this study, we demonstrated a seasonal response of
PCTR peat bog and bog forest soil communities. Seasonal

Fig. 6 Phylotype co-activity network of fungal ITS, protist 18S rRNA,
archaeal 16S rRNA and bacterial 16S rRNA phylotypes in RNA
libraries. a Node shape indicates taxonomic group and color
indicates phylotype location preference (ecohydrology and soil
depth of maximum OTU abundance). Node size scaled by

DeSeq2-normalized abundance counts. Only taxa were found in DNA
and RNA libraries in all habitats and dates were included in the
network. Bog Forest co-activity cluster 1 shown in detail in inset.
Phylotype environmental correlations are shown in Supplementary
Figure 13
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turnover of fungi and protists co-occurs with decreasing
temperature as well as increasing precipitation, pH and
nutrient availability. These biotic and abiotic shifts
appear to stimulate anaerobic activity, e.g., by SRB and
methanogenic phylotypes, associated with changes in net
CH4 flux rates. While this study does not account for
the potentially important effects of rapid storm-driven
changes in microbial activity and carbon flux, it shows
that rRNA amplicon sequencing, alongside rRNA gene
amplicon and mRNA characterization, can link seasonal
shifts in soil conditions and ecosystem function to the
abundance of putatively active microbial phylotypes. Fur-
ther, changes in climactic patterns that alter these biotic and
abiotic interactions could alter the fate of carbon including
DOC, CO2, and CH4 fluxes from coastal temperate rain-
forest soils.

Data availability

All metadata are archived in the Hakai Institute data repo-
sitory at https://doi.org/10.21966/1.715630. All raw ampli-
con reads can be found in the European Nucleotide Archive
(ENA) (http://www.ebi.ac.uk/ena) with accessions: 16S
rRNA (ERS1798478–ERS1798770), ITS (ERS1798771–
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ERS1799358). Raw metatranscriptome reads are in ENA
accessions ERS1799437–ERS1799448.
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between marker transcripts (p < 0.001). Genes followed by a + have
multiple names for a particular KO. KO IDs for phylogenetic tree
provided in network panel. DNRA dissimilatory nitrate reduction to
ammonia. Full, interactive CH4, N, and S metabolism marker tree
(https://itol.embl.de/tree/20687130140153041514909028)
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