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Intensification of food production has the potential to drive increased disease
prevalence in food plants and animals. Microsporidia are diversely distributed,
opportunistic, and density-dependent parasites infecting hosts from almost all
known animal taxa. They are frequent in highly managed aquatic and terrestrial
hosts, many of which are vulnerable to epizootics, and all of which are crucial for
the stability of the animal–human food chain. Mass rearing and changes in
global climate may exacerbate disease and more efficient transmission of
parasites in stressed or immune-deficient hosts. Further, human microspori-
diosis appears to be adventitious and primarily associated with an increasing
community of immune-deficient individuals. Taken together, strong evidence
exists for an increasing prevalence of microsporidiosis in animals and humans,
and for sharing of pathogens across hosts and biomes.
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Parasites in Food Chains
In high-income countries, approximately 70% of deaths in people over the age of 70 result from
non-communicable or chronic conditions. In low-income countries almost 40% of deaths occur
in children under the age of 15 and are generally associated with infectious diseases (e.g., HIV/
AIDS, malaria, diarrhea, and tuberculosis). Many of these deaths are caused by pathogens
transmitted via food and water supplies [1]. Human food originating from both plants and
animals is produced, processed, and marketed in intricately linked systems of primary pro-
ducers (e.g., corn, cattle, fish), input and service providers (i.e., pesticides, water, veterinary
drugs), transporters, processors, wholesalers, retailers, consumers, and end-users of byprod-
ucts (e.g., manure). Foodborne diseases comprise a broad range of illnesses caused by
ingestion of pathogens, parasites, chemical contaminants, and biotoxins that are either naturally
present in food or can contaminate food at different points in the production and preparation
process [2]. Many of the 300 species of helminths and over 70 species of protists known to infect
humans are transmitted via food and water [3]. Infectious life stages are acquired by ingesting
tissues of infectedmammals, fish, or invertebrates, as well as from contaminated food and water
supplies or via contaminated fomites or fingers. Although traditionally associated with tropical
outbreaks, perceptions of risk in temperate regions are changing following large outbreaks of
parasitic infections due to agents such as Toxoplasma gondii [4] and Cryptosporidium spp. [5].
Globalized food trade and travel clearly have the potential to increase the risk of imported
parasitoses from tropical countries [6]. Microsporidia, although not currently considered to be
priority foodborne parasites, have the potential to enter the human food chain through
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waterborne and foodborne routes, and via exposure to the environment. As such, natural hosts
of human infective microsporidia can be part of the human food chain (e.g., [7,8]). In this review
we consider members of the phylumMicrosporidia as agents of emergent disease in hosts from
major global biomes and food production sectors (terrestrial, aquatic) and in human consumers.
Further, we combine phylogenetic, ecological and immunological perspectives to propose
unifying themes, under a ‘One Health’ banner, which may explain the emergence of these
opportunists.

Microsporidia – What Are They and Where Did They Come From?
Microsporidia are a hyper-diverse phylum of spore-forming parasites infecting hosts from all
major animal taxa in all global biomes (Box 1). The array of hosts is equally diverse, ranging from
protists (in some of which Microsporidia are hyperparasites) to vertebrates including humans.
Species in almost half the known microsporidian genera infect aquatic hosts, and thousands of
these pathogens remain undescribed [9]. Morphological approaches to within-phylum taxon-
omy have generally been superseded (or at least augmented) by sequence comparisons of the
ribosomal rRNA genes (e.g., [10,11]). Debate over placement of the Microsporidia within the tree
of life has progressed from historical grouping with spore-forming parasites to the current
molecular phylogenetics-based view that they are affiliated with the fungi [12,13]. Analysis of the
first complete microsporidian genome (Encephalitozoon cuniculi) [14] confirmed that the previ-
ous phylogenies showing a deeper position, and which suggested that the microsporidia were
an ancient primitive lineage, was an artifact of long branch attraction [15], a finding supported by
the discovery of highly reduced mitochondria (mitosomes) within the microsporidian cytoplasm
[16]. While more recent confirmation of a fungal relationship is now accepted by most, their
specific relationships and their branching either within the Fungi (e.g., [17]) or outside the group
[18,19] are a topic of further debate. Although phylogenetic comparison of known taxa from
within the Microsporidia or the Fungi has failed to resolve this issue, the recent discovery (and
phylogenetic placement) of three novel lineages, the Cryptomycota [20,21], the aphelids [22,23],
and the genusMitosporidium [24] as intermediate between Fungi and the rest of the eukaryotes
has re-ignited interest. The Cryptomycota appear to branch at the base of the Fungi and contain
the Microsporidia as well as the aforementioned aphelids and Mitosporidium. Discovery of the
group is clarifying relationships between the Microsporidia, parasites with intermediate char-
acteristics (such as Mitosporidium), and all other eukaryotes, at the same time revealing how
their peculiar infection machinery likely evolved [25].

Opportunistic Pathogens in all Major Biomes
Based on the descriptive criteria defined by the International Committee of Zoological Nomen-
clature (ICZN), the phylumMicrosporidia currently comprises over 200 genera [26]. Phylogenetic
analysis (based upon small subunit rRNA partial gene sequence) of 70 of these genera reveals
five apparent clades broadly classified into three major groups according to predominant host
and environment type, termed the Aquasporidia (clades 1 and 3), the Terresporidia (clades 2 and
4), and the Marinosporidia (clade 5) [27]. It is noteworthy that most of these clades contain
exceptions, likely associated with either the pathogen or even the host switching to a new
habitat. Host-switching may be more likely if the microsporidian parasite is a generalist or where
hosts move between habitats (e.g., freshwater to marine, or freshwater to terrestrial). In the case
of confirmed human-infecting taxa, representatives are observed across the phylum and include
the genera Enterocytozoon, Encephalitozoon, and Vittaforma (clade 4, Terresporidia), Anncalia
and Tubulinosema (clade 3, Aquasporidia), and Pleistophora (clade 5, Marinosporidia) [27].
Although not inconceivable that Homo sapiens serves as a type host for particular micro-
sporidian taxa, given the spread of human-infecting genera across known clades and the
preponderance for infection to occur in immune-compromised patients (see below), it is perhaps
more likely that these infections represents zoonotic transfer from hosts inhabiting terrestrial,
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Box 1. Microsporidia Form and Function

Microsporidia are single-celled, eukaryotic, spore-forming parasites, and both generalist and specialist species are found
in invertebrate and vertebrate hosts. There are twomain clades of microsporidia: the typical (or advanced) and atypical (or
primitive) microsporidia [94]. The atypical microsporidia are a small group composed of approximately 13 genera and 42
species [95]. The majority of known microsporidia are of the typical variety, with �190 genera and an estimated 1300–
1500 species [28]. This group contains the opportunistic taxa that have simple to complex developmental sequences
and life cycles. Spores of the typical microsporidia contain one or two nuclei (the diplokaryon), are most commonly oval or
pyriform in shape, and average 2–8 microns in size, but can be as small as 1 micron or as large as 30 microns in length.
The spore has a very complex structure that contains the extrusion apparatus for infecting the host cell. The spore wall is
composed of two layers: an electron-lucent endospore layer that contains chitin, and an electron-dense exospore that is
often layered. The unique infection apparatus is composed of three main parts: a long, thread-like polar filament, a
multilayered polaroplast, which is a highly membranous structure that occupies the anterior half of the spore, and a
posterior vacuole (Figure I). When the spore is in the appropriate host and environment, the spore germinates and the
polar filament is everted to become a hollow tube. The sporoplasm travels through this tube and is inoculated into the
cytoplasm of the host cell to begin replication [94,96]. Generalist species of microsporidia have a broad host-range and
the ability to infect both invertebrate and vertebrate hosts [28]. Generalists are often responsible for opportunistic
infections in vertebrates. Some notable genera containing species capable of infecting and developing in both arthropod
and vertebrate hosts are Anncaliia, Tubulinosema, Trachipleistophora, and Encephalitozoon, although other genera have
been implicated bymolecular data with species in arthropod and vertebrate hosts (e.g., Enterocytozoon, Endoreticulatus)
[29]. Specialists are restricted to infecting and developing within a narrow range of closely related hosts, or some species
require an obligate two-host system with a definitive host and intermediate host (e.g., Amblyospora).

Figure I. The Features of a Typical Microsporidian Spore. (A) Diagram. (B) Transmission electron
micrograph. The rigid spore wall is composed of the exospores, the endospore, and a sophisticated
extrusion apparatus containing the polar filament, polaroplast, and the posterior vacuole.
freshwater, and marine environments. Transfer in this case may relate to direct exposure to type
host taxa (e.g., via the food chain) but also by contact with extra-host parasite life-stages in the
environment in which they reside. In this respect, the potential for susceptibility of humans to
infection by other Microsporidia across the phylum appears to be significant.
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Microsporidia and Immune Competence
In nature, microsporidia typically develop a balanced interaction with their host, leading to long-
term subclinical infections [28]. When the immune condition of the host is compromised,
infection can lead to overt signs of clinical disease, highlighting the key role of immune
competence in mitigating individual- and population-level health effects of microsporidiosis
[29]. Human immune deficiencies can be categorized into primary and secondary types. Primary
immune deficiencies (PID) are derived from intrinsic and inherited defects in the immune system.
Although PID cases are rare (an estimated 250 000 cases are currently diagnosed in the USA)
(Immune Deficiency Foundation; http://primaryimmune.org/about/), microsporidian infections
have been occasionally reported in PID patients [30]. More common are secondary immune
deficiencies (SID) which are acquired from an array of causes including chemotherapy and/or
radiation treatments for malignancies, immune-suppressive therapies (to prevent transplant
rejection), malnutrition, poor sanitation, aging, and infectious diseases such as HIV/AIDS (www.
uptodate.com/contents/secondary-immunodeficiency-due-to-underlying-disease-states-
environmental-exposures-and-miscellaneous-causes). Prior to the HIV/AIDS pandemic in the
mid-1980s, microsporidiosis was rarely reported in human patients [31]. The pandemic brought
to light the opportunistic capability of microsporidia to infect humans and produce disease in
virtually all organs [32,33] (Figure 1). Before common use of anti-retroviral therapies, micro-
sporidiosis was reported in at least 15% (and up to 85%) of HIV/AIDS patients [34]. However,
although prevalence declined with improved therapy, an increase in newly diagnosed cases of
HIV in people over 50 years of age, coupled with an aging population of patients living with HIV, is
leading to so-called HIV-associated non-AIDS (HANA) conditions that accelerate the onset of
diseases normally observed in the elderly. These patients show accelerated immune senes-
cence, leaving them susceptible to opportunistic infections, including microsporidia. Reactiva-
tion of latent microsporidian infections with age, or with subsequent use of chemotherapy or
immune-suppressive treatments, has also been reported [35]. Although at least ten micro-
sporidian genera have been associated with human patients (Table 1), the most frequently
detected species is the gut-infecting Enterocytozoon bieneusi in patients with HIV/AIDS, in
whom it produces chronic diarrhea [32] (Box 2).
Figure 1. Microsporidiosis in Humans. (A) Encephalitozoon hellem keratoconjunctivitis. Areas of corneal damage due to
microsporidiosis (arrow). (B) Corneal scraping from a case of microsporidian keratoconjunctivitis demonstrating spores
(arrow) of E. hellem. (C) Conjunctival biopsy in a case of microsporidian keratoconjunctivitis demonstrating microsporidian
spores in cross-section (arrows point to polar tubes, the infective structures). The arrangement of the polar tubes is
consistent with Encephalitozoon. (D) Intestinal biopsy from a patient with gastrointestinal microsporidiosis and diarrhea due
to Enterocytozoon bieneusi (arrows point to spores in the apical region of an intestinal epithelial cell). (E) Stool stained with
modified trichrome stain (arrows point to spores). PCR confirmed that this infection was due to E. bieneusi. (F) Intestinal
biopsy from a patient with gastrointestinal microsporidiosis and diarrhea due to Encephalitozoon intestinalis.
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Table 1. Confirmed Infections of Humans by Members of the Phylum Microsporidia

Conditions of Immune-Deficiency or Immune-Suppression Refs

Taxon HIV Transplant Cancer Other Conditions and
Risk Factors

Anncaliia (syn. Nosema,
Brachiola) algerae

N/ra Kidney Yes Rheumatoid arthritis,
ocular infection,
steroids, Crohn's
disease, diabetes

[97,98]

Anncaliia (syn. Nosema)
connori

N/r N/r N/r Athymic child [99,100]

Anncaliia (syn. Brachiola)
vesicularum

Yes N/r N/r N/r [99,101]

Encephalitozoon cuniculi Yes Kidney,
bone
marrow

Yes Children, Primary
Immune Deficiency,
diabetes, heart
disease, ocular
infection, steroids

[29,35,102–105]

Encephalitozoon hellem Yes N/r Yes Ocular infection,
steroids

[106–108]

Encephalitozoon intestinalis Yes Bone
marrow

Yes Children, ocular
infection, steroids

[29,106,108–114]

Encephalitozoon sp.
(undetermined)

N/r Pancreas,
kidney

Yes Diabetes [115]

Endoreticulatus spp. N/r N/r N/r Ocular infection,
steroids

[108]

Enterocytozoon bieneusi Yes Kidney,
liver,
heart,
lung

Yes Children [33,36,110,111,116,117]

Microsporidium ceylonensis,
M. africanum

N/r N/r N/r Ocular infection,
trauma

[108]

Nosema ocularum N/r N/r N/r Ocular infection,
trauma

[118]

Pleistophora ronneafiei Yes N/r N/r N/r [52]

Trachipleistophora
anthropopthera

Yes N/r N/r Ocular infection,
steroids

[51,119]

Trachipleistophora hominis Yes N/r N/r Ocular infection,
steroids

[51,108]

Tubulinosema acridophagus Yes Bone
marrow

N/r N/r [120]

Vittaforma corneae Yes N/r N/r Children, ocular
infection, steroids,
trauma

[35,108,121]

Unidentified species N/r N/r Yes Sjögren's disease,
ocular infection,
immune-suppressive
treatment

[122]

aN/r – not recorded.
Age, both young and old, has been associated with elevated burden of microsporidiosis. In very
young children (below age six) immune immaturity coupled with inadequate hygiene practices
and malnutrition have revealed surprising levels of infection (e.g., 18.2% of children in one study
from Spain) [36]. Epidemiological studies of E. bieneusi specifically have revealed background
prevalence ranging from 4.4% to 22.5% in HIV-negative children [37]. In the elderly, immune
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Box 2. Enterocytozoon bieneusi – A Zoonotic Pathogen of Humans

Enterocytozoon bieneusi was originally described in 1985 as a cause of gastrointestinal infection presenting as chronic
diarrhea in humans with advanced HIV-1 infection (i.e., AIDS) [32]. Spores are smaller (1.0 � 1.5 mm) than those of
Encephalitozoon spp. (1.2 � 2.2 mm) and more difficult to find in tissue sections. E. bieneusi shows interesting
intracellular developmental involving multinucleated plasmodia with characteristic electron-lucent lamellar inclusions.
Inclusions associate with the nuclear envelope, the endoplasmic reticulum, or both. E. bieneusi appears to be widely
distributed in both mammals and birds; it has been reported in pigs, dogs, cows, chickens, pigeons, falcons, and various
primates. Family-level relatives exist in fish and other aquatic animals. Zoonotic transmission of E. bieneusi has been
confirmed [57]. Infection of the epithelium of the gastrointestinal tract is the most frequent presentation of microspor-
idiosis, and over 90% of these infections are caused by E. bieneusi, with the remainder mostly being caused by En.
intestinalis. Infection does not produce active enteritis or ulceration, although infection results in variable degrees of villous
blunting and crypt hyperplasia. Infection is associated with malabsorption, perhaps as a consequence of increased
villous epithelial cell turnover leading to functional immaturity of the villous epithelial cells. In humans with AIDS, E. bieneusi
infection has also been associated with infection of the biliary tract and sclerosing cholangitis [33]. Hepatitis with infection
of the biliary system (including the gallbladder) caused by E. bieneusi has also been described in monkeys and pigs;
although systemic dissemination is rare, spores have been associated with proliferative serositis (peritonitis) in macaques
(Macaca mulatta) and in the nasal mucosa of humans [123]. There are also reports of pulmonary involvement associated
with chronic diarrhea, persistent cough, dyspnea, wheezing, and chest radiographs showing interstitial infiltrates, with
spores being found in stool, bronchoalveolar lavage fluid, and transbronchial biopsy specimens [124], as well as a report
of this organism being found in the urine of renal transplant patients.
senescence and declining numbers of naïve T cells lead to weakened response to new
infections. In one study of HIV-negative individuals with a mean age of 73.5 years, 17% of
patients presenting with symptoms of diarrhea were infected with E. bieneusi [38]. Given a
growing human global population aged 65 years and over (16% by 2050), immune senescence-
associated microsporidiosis is likely to increase [39].

Microsporidia in Food and Water
Ingestion of contaminated food and water, either directly or indirectly (via exposure to the
environment) offers the most likely route of transmission of microsporidian spores to humans
[40]. To this end, the majority of human-pathogenic microsporidia detailed in Table 1 have been
detected in water. Comprehensively reviewed by Fayer and Santin [34], it is considered that
water, either consumed directly by drinking or indirectly via irrigating or washing foods, bathing,
washing, or for recreation, provides a crucial medium for spore survival and transmission.
Excretion of spores from infected humans and animals via urine and feces is the primary route of
water contamination. Recalcitrance within freshwater and marine environments at a range of
temperatures contributes to retention of infectivity and the potential for wide dispersal from
point-sources [41]. Surveys of surface, drinking, waste, and recreational waters have consis-
tently demonstrated the presence of microsporidian parasites. In some cases, filter-feeding
molluscs have been deployed as sentinels for detection of microsporidia in surface waters,
specifically demonstrating the presence of the human pathogens E. bieneusi, Encephalitozoon
intestinalis, and Encephalitozoon hellem [42,43]. However, given that over 200 genotypes of E.
bieneusi have so far been identified (some exclusively in human or animal hosts, and others
infecting both), accurate typing of isolates detected in the water sources used by humans is an
important step in understanding the true risk of exposure [44]. Furthermore, because E. bieneusi
resides within a family of microsporidia otherwise exclusively infecting fish and crustacean hosts
[45], future studies to investigate the potential for genotypes of E. bienuesi (or closely related
taxa) to exist in a replicative form within aquatic environments are required [9].

Microsporidia have also been detected directly in food destined for human consumption. Soft
fruits, vegetables, and herbs collected from markets in Poland were contaminated with E.
bieneusi and En. intestinalis [46]. Milk contaminated with human pathogenic genotypes of E.
bieneusi has been reported originating from herds in Korea [47]. A foodborne outbreak of
gastrointestinal illness in over 100 people was associated with consumption of E. bieneusi-
contaminated cucumbers in Sweden [48].
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Although not directly related to food consumption, the propensity for insect-infecting micro-
sporidia to be vectored to humans either by bite, sting, or contamination of the skin by feces of
the insect host has been demonstrated. Examples include Anncalia algerae infections in the eye
and musculature [49], Tubulinosema sp. infection of the tongue [50], and Trachipleistophora sp.
infections of the skeletal muscle and organs [51]. Increasing contact with infected insects mass-
reared for human consumption may pose a future occupational and consumption risk. Similar
contact-related risks have been identified for aquatic animals associated with infections by
Pleistophora sp. in the musculature of immune-suppressed patients with or without HIV/AIDS
[52,53]. Furthermore, microsporidiosis has been widely reported in livestock, including infection
of chickens. Genotypes of E. bieneusi [54] and Encephalitozoon spp. [55] occur in pigs and cows
in China, some infected with the same genotypes of E. bieneusi that infect humans living in close
proximity [56]. Contact between humans and companion animals (pets) has also revealed
potential for zoonotic transfer of E. bieneusi between guinea pigs and children [57] and
potentially from a human AIDS patient (infected with En. intestinalis) to a cat [58]. Clearly,
the environment offers ample potential for food-, water- and contact-driven transmission of
microsporidian parasites from animals to susceptible human hosts (Box 1).

Microsporidia in Major Food Production Chains
In addition to the direct risk to humans associated with consuming contaminated water or food,
it is appropriate to consider how microsporidia may directly interact with hosts mass-produced
for food and for use in food production chains (e.g., biological control agents), or with pollinators
that provide ecosystem services to enable food production.

Microsporidia infecting terrestrial invertebrates directly impact their natural host populations, and
can devastate mass-reared colonies of insects used as human or animal food, as biological
control agents of agricultural pests, or agricultural pest species used to produce biological
control agents. Microsporidia are known to infect more than 30 species of field-collected and
mass-reared beneficial invertebrates including parasitoids, predatory insects and mites, phy-
tophagous insects used for weed control, and beneficial nematodes. They decrease food
consumption in their hosts, prolong development, impart physical deformations, reduce fecun-
dity and longevity, and increase mortality [59]. For example, Muscidifurax raptor, a parasitoid
found naturally occurring on dairy farms where they provide effective house- and stable-fly
control, is mass-reared for inundative release. However, overcrowding and stress in commercial
insectaries leads to high prevalence (86–100%) of Nosema muscidifuracis, a microsporidium
that reduces both the lifespan and fecundity of the parasitoid and heavily impacts on fly control
on the farm. Pathogen prevalence is also high (up to 84%) on farms where infected parasitoids
are released [60,61]. Because microsporidian infections are typically cryptic, they may be
overlooked initially in mass-reared colonies [59]. However, with increasing recognition of the
potential of insects as a source of protein for the burgeoning global population [62], more
controlled mass-rearing conditions, including the development of pathogen-free brood lines and
appropriate legal frameworks for their trade, are now required.

Insects play pivotal roles in global food production, with wild andmanaged bees providing critical
pollination services [63]. Apparent gaps between global crop pollination needs and the avail-
ability of large-scale pollinator populations (e.g., domesticated honeybee colonies) are due (at
least in part) to the highly publicized syndromic condition termed colony collapse disorder (CCD),
which has prompted focus on research about bee health and disease in recent years [64].
Despite the fact that infections by Nosema apis and Nosema ceranae have specifically been
correlated to losses of honeybee colonies [65,66], definitively linking microsporidian infections
per se to colony declines, in either the USA or in Europe, has not been possible [67,68]. In
addition to potential shortfalls in pollination bymanaged pollinator populations, a global decline in
wild pollinator populations has also been reported [69]. ‘Spillover’ of infectious diseases from
342 Trends in Parasitology, April 2016, Vol. 32, No. 4



domesticated pollinator populations to wild pollinators has been highlighted as a significant
potential source of emerging infectious disease (EID) in wildlife [70]. Specifically, the propensity
for honeybees to host a wide range of infectious agents (including microsporidia) [71], and the
detection of parasites such as N. ceranae in bumblebees occurring in close proximity to
managed honeybee colonies (e.g., [72]), provides at least some evidence for such spillover.
However, lack of historical information, inconsistent application of accurate diagnostics to
honeybee and bumblebee infections, and a paucity of well-designed studies to examine
possible spillover make confirmation of this effect difficult [73]. Recent application of managed
bumblebee colonies for greenhouse pollination has also raised questions about the potential for
similar spillover effects to surrounding wildlife [74] (Box 3).

In terms of aquatic hosts, microsporidia may directly impact on the production of animals
destined for human consumption, or may alter prey populations on which animals destined for
human consumption (e.g., fish) rely. As mentioned above, aquatic hosts support almost half the
knownmicrosporidian genera [9]. In terms of wild (fished) populations, microsporidian epizootics
have been historically associated with collapse of commercial fisheries (e.g., the North American
ocean pout fishery in the 1940s) [75], while in aquaculture, species from numerous micro-
sporidian taxa have impacted on production during the hatchery, grow-out (netpen), processing,
and marketing phases (see [75] for context) Recently, an emergent disease condition termed
‘emaciative syndrome’ was shown to be caused by infection with Enterospora nucleophila in
farmed seabream (Sparus aurata) from the Mediterranean. Disease associated with infection by
this parasite is apparently associated with immune suppression in its host [76], a feature shared
with several other members of the Enterocytozoon clade in which this parasite resides. Previ-
ously, immune suppression has been associated with increased severity of microsporidiosis in
model fish hosts (e.g., zebrafish infected with Pseudoloma neurophilia [77]) while, in other
scenarios, infections by microsporidian parasites have directly impaired immunity, presumably
making their hosts more susceptible to infection by other pathogens (e.g., Nucleospora
salmonis infection of salmonids [78]). It appears likely that an association between suboptimal
environmental conditions, relative immune suppression, and host proximity in aquaculture
settings can encourage microsporidiosis and will lead to further emergence of yield-limiting
diseases in farmed fish.
Box 3. Nosema disease in bumblebees and honeybees

Nosema species infecting honeybees and bumblebees (Apidae) belong to the phylogenetic clade Nosema/Vairimorpha,
the microsporidian taxon most frequently isolated from the Lepidoptera. Nosema bombi, reported from more than 50
species of bumblebees, is a systemic pathogen that appears to be specific to the genus Bombus. Effects of chronic
infections on these essential native pollinators include reduced colony size, males with reduced sperm, decreased
hibernation survival and colony establishment, fewer reproductive females, and reduced female mating capability (e.g.,
[125]). SomeBombus species appear to bemore susceptible toN. bombi infection than others, and, although cause and
effect has not been established, higher prevalences of this microsporidian infection have been reported in several North
American bee species with apparently declining populations [69]. Concerns that exotic strains of N. bombi have been
released into North American Bombus populations via managed pollination services have not been substantiated, but
Nosema pressure on susceptible species could potentially lower resistance to other pathogens. The annual value of
pollination services and hive products of the western honeybee, Apis mellifera, is estimated to exceed $200 billion
globally, but anthropogenic global distribution of this species has resulted in a significant increase of parasites and
pathogens that may have host-switched from other hymenopteran species. Among the most invasive is Nosema
ceranae, thought to have originated from the Asian honeybee, Apis cerana [66]. Similar toNosema apis, which is naturally
occurring in A. mellifera, N. ceranae infects adult bees and has chronic effects, but this pathogen appears to be dominant
and has nearly completely displaced N. apis, particularly in honey bee populations below the 50th parallel north in Europe
and North America. Nosemosis now figures in many reports of colony loss. Unlike N. bombi and most other Nosema
spp., bothN. apis andN. ceranae are pathogens of the honeybeemidgut tissues; however,N. apis appears to be specific
to A. mellifera while N. ceranae has been reported from three other Apis spp. and at least 14 Bombus spp. N. ceranae
causes energy stress, longer and less-frequent foraging flights, and shortens the lifespan of bees (e.g., [126]). It has been
reported to synergize with the deleterious effects of viruses and a variety of agricultural and apicultural pesticides, while
low levels of fumagillin, used to treat nosemosis, may synergize with N. ceranae [127].
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Other high-profile examples exist in wild and farmed aquatic invertebrates destined for human
consumption. Although parasitism is known to occur across most aquatic invertebrate phyla, the
aquatic arthropods in particular, hosting over 50 known genera, appear to be the most affected by
microsporidiosis [9]. In the context of the human food chain, the group containing the decapod
crustaceans (shrimp, crabs, lobsters etc.) support a major economy, amounting to almost 40
billion dollars per annum from wild fisheries and aquaculture [79]. Those pathogens that target the
edible musculature of crustacean hosts have the potential to render marketable meats inedible
[80], while those infecting connective tissues can blight the visual esthetics and marketing of high-
value captured hosts such as king crabs [81]. In aquaculture settings, farmed penaeid shrimp
represent one of the highest-value traded seafood commodities (see [79]). Historically low-
prevalence microsporidian infections such as Enterocytozoon hepatopenaeii have been associ-
ated with ‘slow growth’ syndromes in Penaeus monodon [82]. However, increasingly intensive
farming of the congeneric penaeid Penaeus vannamei in Asia, which now dominates the global
market with first sale values exceeding 10 billion dollars per annum, has led to host-switching of E.
hepatopenaeii to P. vannamei, with accompanying high prevalence and high-intensity infections
being observed in both hosts in association with the recently emergent and devastating syndromic
Figure 2. Microsporidiosis in Shrimp Farming. Routine health-checking of shrimp stock throughout the production
cycle (A,B) and the application of sensitive and specific diagnostics for known and emergent shrimp pathogens has revealed
a host-switching event and emergence of clinical disease caused by the microsporidian parasite Enterocytozoon hepa-
topenaeii in Penaeus vannamei from in Asia. The parasite, congeneric with the human pathogen Enterocytozoon bieneusi,
undergoes similar development within the gut of infected shrimp and is implicated in the multi-billion dollar yield-limiting
condition known as early mortality syndrome (EMS).
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Outstanding Questions
Are appropriate phylogenetic tools
available to allow detailed molecular
epidemiology of known and novel
members of the phylumMicrosporidia?

Can humans be infected with a broader
range of microsporidian taxa than is
currently recognized?

What are the conditions that allow
microsporidia to cross between spe-
cies, and what allows emergent infec-
tions in this phylum?

Is Enterocytozoon bieneusi able to rep-
licate in aquatic vertebrate or inverte-
brate host taxa?

Is there a common node of interaction
(immunological, biochemical) among
microsporidia from across the phylum
and their broad range of hosts?

Can common nodes of interaction be
exploited to evade infection or to miti-
gate pathogenic outcomes in infected
hosts?

Can techniques be developed to allow
genetic manipulation of the microspor-
idia that would facilitate experiments
aimed at understanding the biology
of these organisms?
condition ‘early mortality syndrome’ (EMS) [83] (Figure 2). Phylogenetic analysis placed the parasite
within the Enterocytozoon clade, closest to the human gut pathogen E. bieneusi and to another
intranuclear pathogen, Enterospora canceri, that infects the hepatopancreas of the European
edible crab (Cancer pagurus) [84]. The rapid emergence of this microsporidian has prompted high-
profile warnings to industry from regional bodies such as theNetwork of AquacultureCenters in the
Asia Pacific (NACA; www.enaca.org) advising that E. hepatopenaei should be added to list of
pathogens screened for during production of post-larvae for eventual stocking of commercial
farms. Once again, the link between microsporidiosis and either suboptimal environmental con-
ditions within the farm, or population immune suppression associated with inbreeding, may have
played a role in recent and rapid emergence across major shrimp-farming regions [85].

Terrestrial farm animals can also be infected with microsporidia. Although no clinical cases of
microsporidiosis have been reported in cows or pigs, E. bieneusi, including human-pathogenic
genotypic strains, are commonly detected in the feces of dairy and beef herds [86] and swine
with diarrhea [87]. En. cuniculi and En. intestinalis have also been detected in pigs, again without
apparent clinical outcome for the infected host [88]. Similar associations apparently exist
between En. cuniculi, goats [89], and horses [90]. Human pathogenic strains of E. bieneusi
have also been detected in feces of goats [91]. The first case of non-mammalian E. bieneusi
infection was detected in chickens destined for human consumption [54], and subsequently
other avian hosts were shown to be susceptible [88]. Although published epidemiological
studies determining zoonotic transfer of microsporidia from farm animals to humans are rare,
evidence for shared genotypes in humans, cows, and pigs have been reported from rural
communities in China [56]. Zoonotic transfer between region-specific food animals and humans
have been reported, including guinea pig to human transfer in Peru [57] and rabbit to human
transfer in New Zealand [92].

Concluding Remarks
Microsporidia are ubiquitous inhabitants of all major biomes. As hyper-diverse opportunists, they
exhibit differing degrees of host specificity, life cycle complexity, and ability to infect and cause
disease in almost all known invertebrate and numerous vertebrate phyla, including humans. The
diseases that they impart impact upon managed pollinators, on mass-reared fish and inverte-
brates for food, and on hosts used in biological control of pests. The presence of free- and host-
associated parasite life-stages in water, soil, and food appear to offer ample opportunity for
exposure of humans to animal-infecting forms. Even though the phylogenetic range of human-
infecting forms extends to only 10 of the known 200 genera at present, increasingly consistent
application of molecular diagnostics to animal and human infections will undoubtedly reveal an
increased potential zoonotic range, particularly as new taxa are described from terrestrial and
aquatic systems. Conversely, the application of environmental DNA approaches [93] not only
has the potential to uncover hitherto unknown parasite diversity but will enable research on the
identification of reservoirs for human-pathogenic taxa in terrestrial and aquatic wildlife hosts.

Definitive confirmation of emergence, or even increased prevalence, of microsporidiosis has
been difficult to establish for wild populations in absence of long-term monitoring programs.
However, well-publicized cases of emergence, increased pathogenesis, and morbidity associ-
ated with microsporidian infections exist for widely-divergent host groups, ranging from farmed
shrimp to human patients with underlying infections such as with HIV. In all such cases,
emergence (including potential for host switching) appears to center on a common node of
altered immune competence in these diverse host groups. In essence, the prevalence of
microsporidian infection and the intensity of the diseases they cause provide a living sentinel
of host immune competence that traverses both host taxonomy and the biome in which these
hosts exist. Climate change and other biome-level stressors (e.g., ocean acidification, intensifi-
cation of farming) may associate to impart greater disease burden on hosts from all biomes, and
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thus increase the contact rate between infected animals and humans. Coupled with an
increasing global population of immune-compromised individuals (associated with age, those
undergoing treatment for malignancies and other infectious diseases such as produced by HIV),
microsporidiosis may be expected to rise in both prevalence and severity. The major transmis-
sion route between host groups is via the food chain. Broader consideration of plant/animal/
human diseases associated with environmental pressures under the One Health agenda will be
increasingly required as a means to address the grand challenges associated with global
sustainability (http://www.cdc.gov/onehealth) and to manage microsporidian infections in wild-
life, food animals, and humans (see Outstanding Questions).
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