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Apicomplexans are a major lineage of parasites, including causative
agents of malaria and toxoplasmosis. How such highly adapted
parasites evolved from free-living ancestors is poorly understood,
particularly because they contain nonphotosynthetic plastids with
which they have a complex metabolic dependency. Here, we
examine the origin of apicomplexan parasitism by resolving the
evolutionary distribution of several key characteristics in their
closest free-living relatives, photosynthetic chromerids and pred-
atory colpodellids. Using environmental sequence data, we de-
scribe the diversity of these apicomplexan-related lineages and
select five species that represent this diversity for transcriptome
sequencing. Phylogenomic analysis recovered a monophyletic
lineage of chromerids and colpodellids as the sister group to
apicomplexans, and a complex distribution of retention versus
loss for photosynthesis, plastid genomes, and plastid organelles.
Reconstructing the evolution of all plastid and cytosolic metabolic
pathways related to apicomplexan plastid function revealed an
ancient dependency on plastid isoprenoid biosynthesis, predating
the divergence of apicomplexan and dinoflagellates. Similarly,
plastid genome retention is strongly linked to the retention of two
genes in the plastid genome, sufB and clpC, altogether suggesting
a relatively simple model for plastid retention and loss. Lastly, we
examine the broader distribution of a suite of molecular character-
istics previously linked to the origins of apicomplexan parasitism
and find that virtually all are present in their free-living relatives.
The emergence of parasitism may not be driven by acquisition of
novel components, but rather by loss and modification of the
existing, conserved traits.
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Apicomplexans are globally important parasites of humans
and animals that include Plasmodium (malaria), Toxoplasma

(toxoplasmosis), and Cryptosporidium (cryptosporidiosis). Their
success as parasites rests on several highly specialized structures
and systems that enable them to gain entry to and divide within
cells or tissues of their hosts. These structures include the multi-
membrane pellicle, a relict nonphotosynthetic plastid (absent in
Cryptosporidium), and the apical complex, which is made up of
cytoskeletal and secretory elements (e.g., the conoid and rhoptries,
respectively). Many specific characteristics of apicomplexans make
attractive drug targets, and others may have played a key role in
the origin of parasitism. Indeed, the question of apicomplexan
origins has been of interest in general but is challenged by a pau-
city of comparable information from free-living relatives. Several
apicomplexan relatives are known, some photosynthetic and oth-
ers predatory (1, 2), but we lack a comprehensive understanding of
their biology because they have either been discovered only re-
cently, or are difficult to establish and maintain in culture. In
general, photosynthetic apicomplexan relatives are referred to as
chromerids (including Chromera and Vitrella) (1, 3) whereas
predators are referred to as colpodellids (including Colpodella,

Alphamonas, and Voromonas) (2, 4). Predatory and photosynthetic
varieties are often treated as monophyletic (3), but exactly how
chromerids, colpodellids, and apicomplexans are related to one
another remains unresolved.
The absence of a robust phylogenetic framework is evident in

our inability to reconstruct the evolution of even the most ob-
vious of characters, plastid organelles. Nonphotosynthetic plas-
tids were discovered in apicomplexans over a decade ago (5, 6),
and plastids were present in the common ancestor of not only
apicomplexans, chromerids, and colpodellids, but also dino-
flagellates (7), a lineage collectively called the myzozoans (4).
Photosynthesis has been lost multiple times in the group (7), but
how many times and whether plastids were retained in non-
photosynthetic species are unknown. Myzozoans are a potentially
useful system for characterizing the still mysterious forces that
control plastid retention and loss in general (8). There is now
evidence for the retention of plastid-derived genes in some non-
photosynthetic myzozoans (9, 10), but plastid distribution alone is
of a limited benefit. Reconstruction of dependencies on plastid
metabolic pathways in light of their cytosolic analogs and com-
pound uptake would allow us to go beyond patterns to identifying
processes that explain why plastids have been retained or lost in
myzozoans as well as other eukaryotes.
The origin of the apicomplexan parasitic mechanism has been

even more elusive. This elusiveness is partly because of their
diverse strategies of interacting with the host cell and immunity:
Many early-branching apicomplexans do not invade cells com-
pletely (e.g., some gregarines), many secreted proteins are spe-
cies-specific (e.g., ROP proteins), and both structures and
functions may be lost (e.g., Theileria lacks an apical complex).
Other apicomplexan characteristics are ancestral, but their
original function is unclear because structures involved in in-
vasion have been identified in free-living relatives: an open
conoid and rhoptry-like organelles are found in colpodellids,
Chromera, and dinoflagellate relatives (11, 12) whereas the
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multimembrane alveolar pellicle is found across an even broader
group (4, 13). Their homology is generally inferred from mor-
phological similarity, but how deeply their functions are linked at
the molecular level is unknown. Similarly, apparently unique
characteristics in many apicomplexan proteins (14, 15) could be
linked to the evolution of parasitism, but this idea cannot be
tested without knowing their real distribution.
Here, we examine the origin and early evolution of apicom-

plexans based on analysis of molecular data from their free-living
relatives. We first surveyed the global diversity of apicomplexan-
related lineages from environmental sequence data, which reveal
a number of uncharacterized groups in previously overlooked
environments. Five species, two photosynthetic chromerids and
three predatory colpodellids, spanning the majority of this
diversity were then cultured, and their transcriptomes were
sequenced. A concatenated phylogeny of 85 nuclear proteins
unambiguously rejected the monophyly of both chromerids and
colpodellids, resolved their relationship to apicomplexans, and
showed multiple independent losses of photosynthesis in early
apicomplexan evolution. The metabolic basis for plastid de-
pendency was reconstructed, pointing to an ancient reliance on
organelle isoprenoid synthesis and a mechanism of plastid and
plastid genome retention or loss. Finally, the origin of parasitism
itself was examined by determining the broader distribution of
putatively apicomplexan-specific features. Many of them could
be traced back to free-living relatives, or beyond, and few char-
acteristics are unequivocally associated with the origin of api-
complexans, suggesting that the boundary between parasites and
their free-living relatives is not likely to be represented by
a readily identifiable suite of character-state changes.

Results and Discussion
Diversity and Distribution of Apicomplexan Relatives. Understanding
the diversity of the closest relatives of apicomplexans is critical to
understanding their origin, but the only direct survey to date (9)
used plastid markers, which may be misleading if plastid genomes
are not universally retained. Accordingly, we identified apicom-
plexan-related lineages in nuclear 18S rDNA environmental
sequences from GenBank, augmented with 78 sequences am-
plified from marine, soil, and freshwater samples using apicom-
plexan-specific primers (SI Appendix, Table S1 and Materials and
Methods). Phylogenetic analysis of 226 environmental sequences
added to a reference alignment including 106 eukaryotic 18S
rDNAs of an established topology (SI Appendix, Fig. S1) were
congruent with the reference tree and consistently recovered
major apicomplexan and eukaryotic subgroups (Fig. 1 and SI
Appendix, Figs. S1 and S2). In addition to many individual
sequences, 11 strongly supported clades known only from environ-
mental sequences were identified. Six of these clades branched
within the apicomplexans (clades VI to XI) (Fig. 1). Most branched
close to gregarines; however, a small group is related to coccidians
and hematozoans (Fig. 1 and SI Appendix, Fig. S2). These se-
quences come from oxygen-depleted marine sediment in Green-
land (clade XI), with the exception of a single sequence obtained
in this study from a coral reef sample.
The majority of environmental sequences (77%) branched

basal to apicomplexans (Fig. 1), including five previously un-
identified clades of apicomplexan relatives, dominated by either
freshwater (clades II, III, and IV) or marine (clades I and V)
samples. Most environmental sequences, however, fell into en-
larged clades encompassing known genera, and some shared
similar habitats: Vitrella and Voromonas are marine and are
surrounded by marine sequences, and the relatives of Vitrella
are specifically derived from CaCO3-dominated environments
(SI Appendix, Table S1), consistent with previous evidence (9). In
contrast, other groups are mixed: Chromera is marine and falls
within a predominantly marine clade, but its closest relative is
from fresh water, and other relatives comprise a mix of marine,
hypersaline, and soil sequences (Fig. 1). The Colpodella clade
(commonly described from fresh water and soil) contains marine
sequences, as well as sequences from animal feces, calves with

diarrhea, moa coprolites, oocysts in ostrich feces, and one pre-
viously reported from human blood (16). Several of these
sequences were interpreted as Cryptosporidium parasites, and
their consistent recovery from animal hosts, sometimes associ-
ated with disease, is suggestive of parasitism or opportunism.
Additional sequences come from environments where apicom-
plexan relatives are known but little understood [hypersaline
habitats in Fig. 1 (2) and coral reefs in clade V and SI Appendix,
Fig. S2 (9)], or where none have yet been described (low oxygen
environments; 26% of all environmental sequences) (SI Appen-
dix, Table S1). Overall, much of the diversity of apicomplexan
relatives remains uncharacterized, but the few chromerids and
colpodellids that have been characterized in any detail are
scattered broadly among this diversity, suggesting that they al-
together represent a great potential for understanding deep
apicomplexan evolution.

A Complex Distribution of Photosynthesis. To reconstruct major
transitions around the origin of apicomplexans, we carried out
transcriptomic surveys from five species that cover much of the
diversity of free-living apicomplexan relatives (Fig. 1): both
photosynthetic chromerids (Chromera and Vitrella) and three
nonphotosynthetic colpodellids (Voromonas, Alphamonas, and
Colpodella). Both chromerids are available in culture, but col-
podellids are generally not because they require eukaryotic prey
that is itself heterotrophic. All three genera were successfully
cultured on enrichments of Procryptobia, Spumella, and Para-
bodo, and transcriptomes of all five were sequenced by Illumina
100-bp paired-end technology and assembled. Transcriptomes
were generated from two cultured strains of Colpodella angusta
of different cell size (Spi-2 and BE-6), which were nearly iden-
tical at the nucleotide level and pooled. Chromera and Vor-
omonas contigs were also pooled with those generated in recent
independent studies (Materials and Methods) (10).
To determine the relationships among these five lineages and

parasitic apicomplexans, a phylogeny was inferred from a con-
catenated alignment of 40 taxa and 85 nucleus-encoded proteins
previously tested in eukaryote-wide phylogenies (17). Individual
phylogenies of all 85 proteins had congruent topologies and were
combined into a supermatrix minimizing missing information
(Materials and Methods). The resulting multiprotein phylogeny is
strongly and consistently resolved by both maximum likelihood
(ML) (RAxML LG+GAMMA model) and Bayesian (Phylo-
bayes; GTR+CAT+GAMMA model) analyses (Fig. 2). Contrary
to expectations based on smaller datasets (7), all chromerids and
colpodellids form a single monophyletic sister group to api-
complexans with strong support, which we will informally refer to
as “chrompodellids.” Within this group, however, neither chro-
merids nor colpodellids are monophyletic: Chromera is closely
related to Voromonas and Colpodella whereas Vitrella branches
at the base of the group (alternative positions with apicomplex-
ans or deeper are rejected by approximately unbiased tests)
(Fig. 2). This phylogeny shows that photosynthesis was lost, not
only in the ancestor of apicomplexans themselves but also in at
least two additional lineages: in the branches leading to Alpha-
monas, and to Voromonas and Colpodella (Fig. 2). This number
may increase further depending on the nature of the yet unchar-
acterized lineages (Fig. 1).

The Principles of Dependency on Nonphotosynthetic Plastids. The
functions of apicomplexan plastids are now well-established (18,
19), but why it was retained is not necessarily obvious given these
functions. This uncertainty is because, in the early stages of its
endosymbiotic integration, many core biosynthetic functions
would have existed in both the host and symbiont. The evolution
of efficient transport of metabolites would lead to functional
redundancy, which in turn may result in the loss of metabolic
capacity in one or the other, subfunctionalization, or, rarely, their
merger. If cytoplasmic loss or subfunctionalization takes place,
then the host becomes dependent on the plastid even if other
plastid functions, including photosynthesis, are lost. Photosynthesis
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has therefore been lost many times, but plastid loss is very rare (20)
because the compounds supplied by plastid biosynthetic pathways
are rarely available directly from the environment. To identify
metabolic functions that may have led to plastid dependency
in apicomplexans and their relatives, we reconstructed the

distribution of three key metabolic pathways: isoprenoid (IPP
and DMAPP), tetrapyrrole, and fatty acid biosynthesis. The
evolutionary history of the plastid versions of all three pathways has
been well-characterized in apicomplexans (18, 19), but their his-
tory in other myzozoans and the fate of the cytosolic versions are
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less clear. We identified plastid and cytosolic candidate genes for
all enzymes in all three pathways from apicomplexans and
chrompodellids, as well as dinoflagellates and their sisters,
perkinsinds (Materials and Methods and SI Appendix, Table S2).
In the parasites, uptake of corresponding metabolites from hosts
was also summarized from published predictions based on both
direct and indirect evidence.
The results (Fig. 3 A and B) predict that plastid dependency

was established early, before the split of apicomplexans and
dinoflagellates, and that the key event was the loss of cytosolic
isoprenoid biosynthesis in the common ancestor of apicomplexans
and dinoflagellates. Plastid isoprenoid biosynthesis has been
maintained in all myzozoans, with the exception of Cryptospo-
ridium, and was previously proposed to be the only indispensable
plastid pathway in the Plasmodium blood stage, and therefore
a strong selective explanation for its retention (21). Altogether,
this evidence suggests that dependency on plastid isoprenoids is
not only ancestral, but also the most significant barrier to plastid
loss over a much longer evolutionary time span. Biosynthesis of
tetrapyrroles and fatty acids may also contribute to plastid de-
pendency, but only in certain subgroups. Photosynthetic dino-
flagellates seem to rely on plastid tetrapyrrole biosynthesis in the
absence of its mitochondrial/cytosolic counterpart (22), and chro-
mpodellids and apicomplexans rely on several plastid-localized
steps (18, 23). Perkinsus seems to have retained the ability to
synthesize tetrapyrroles in the cytosol (three enzymes were not
identified, however). Fatty acid biosynthesis and elongation is
the most complex and least understood of the three pathways,
but the plastid variant seems to be dispensable in some non-
photosynthetic species or their life stages (24).
Plastid dependency can be lost if the compounds supplied by it

can be acquired from the environment (Fig. 3B). In the case of
parasites (and symbionts), independence from metabolic pathways

typically means salvaging metabolites from their host and exploiting
a niche that sufficiently covers demands throughout the lifecycle.
For plastids in myzozoa, independence from plastid-synthesized
fatty acids, heme, and especially isoprenoids would be required.
Cryptosporidium is currently the only myzozoan where complete loss
of these biosynthetic pathways is known to have taken place, and
plastids have been lost outright (20). Interestingly, Cryptosporidium
is predicted to have a very low requirement for heme (25) and
has retained the fatty acid elongation pathway in the cytosol
and endoplasmic reticulum (ER) (26). We hypothesize that an-
other major factor in its plastid independence is the exploitation of
a single host niche (gut epithelium) throughout its lifecycle. That
implies that isoprenoid precursors may be more readily available
in gut epithelium than other cell types and that other species with
similar infection strategies (like gregarines) are more likely to lack
plastids. For generalists like Toxoplasma (27, 28), or species that
pass through blood like Perkinsus, Theileria, or Plasmodium (whose
blood stage is dependent on de novo biosynthesis of isoprenoid
precursors) (21), plastids are more likely to be retained because, in
at least one life stage, plastid metabolism is essential.
All free-living phototrophs and heterotrophs retain the capa-

bility to synthesize isoprenoids, tetrapyrroles, and fatty acids (as
is also apparent here) (Fig. 3A), suggesting that they are not
readily available from food or the environment. The ancient
establishment of plastid dependency in myzozoa therefore pre-
dicts that plastids have been maintained in free-living apicom-
plexan relatives. Indeed, all three colpodellid predators that we
examined were found to contain abundant evidence for plastids
with metabolism almost identical to that of apicomplexans (Fig.
3A). Plastid isoprenoid and heme synthesis is common to all (and
chromerids) whereas fatty acid biosynthesis is differentially rep-
resented, much like in the apicomplexans. Alphamonas expresses
primarily the plastid FASII (similar to Plasmodium), Voromonas
and Colpodella express the cytosolic PKSI/FASI (similar to Cryp-
tosporidium), and Chromera and Vitrella express both (similar to
Toxoplasma). Altogether, chrompodellids retained all 34 proteins
found in apicomplexans and six additional proteins relating to the
same pathways) (Fig. 3A).
Because this metabolic reconstruction is based on tran-

scriptome data, interpreting the absence of a single gene is not
straightforward. In this case, however, the data do support the
conclusion that cytosolic isoprenoid biosynthesis is absent be-
cause all five genes of the entire pathway are uniformly absent
from all five chrompodellid species, as well as being absent from
all complete apicomplexan genomes. At the same time, the
conclusion that these genes indicate the presence of a cryptic
plastid in colpodellids is based on the presence of plastid-derived
proteins whose localization has been examined in model systems.
The subcellular localization of individual proteins is not known
and may differ in rare cases (particularly in the complex tetra-
pyrrole pathway). However, there is no evidence for a massive
relocation of any of the three pathways (here or in any system),
and plastid localizations in chrompodellids are supported by the
presence of canonical bipartite N-terminal presequences (SI
Appendix, Table S3). Lastly, additional pathways could localize
to nonphotosynthetic plastids and contribute to their dependency.
Certain amino acids are synthesized in the plastids of plants and
algae; their localization in chrompodellids and dinoflagellates
remains unknown although they are apparently not plastidic in
apicomplexans (19). Fe-S cluster synthesis and the ferredoxin re-
dox system represent a different case: they are indispensable for
plastid function in apicomplexans (and are also found in chrom-
podellids) (SI Appendix, Table S3), but their function is not re-
quired in the rest of the cell (29), suggesting that they do not
represent a barrier to plastid loss.

Plastid Genome Dependency. If all essential plastid genes are
relocated to the nucleus and their products are targeted back
to the plastid, then the genome can be lost with no functional
repercussions. Nevertheless, almost all plastids retain a genome,
and its loss is considered unlikely (30); indeed, the first conclusive
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case has only recently been reported in a green alga (31). There are
multiple metabolic and regulatory genes contributing to the de-
pendency on most plastid genomes, but, in apicomplexan plastids,
only two such genes have been retained (6): sufB (a subunit of the
Fe-S cluster assembly) and clpC (a subunit of the ATP-dependent
Clp protease). Both genes are nucleus-encoded in green algae
and plants, indicating that their relocation to the nucleus is
feasible, so we characterized their distribution in myzozoans.
Orthologs of sufB were found in dinoflagellates, Perkinsus, and

all chrompodellids. All myzozoan sufBs cluster with plastid-
encoded and cyanobacterial orthologs in protein ML phylogenies,
and this topology is retained when fast-evolving sequences are
excluded (SI Appendix, Fig. S3 and Materials and Methods). This
tree is consistent with the expected cyanobacterial origin for all

myzozoan sufBs, contrary to recent conclusions (10). With the
exception of Vitrella and apicomplexans, however, all myzozoan
sufB sequences are predicted to be nucleus-encoded: The genomic
sequences in Perkinsus and Symbiodinium each contain multiple
introns, and transcript sequences in Chromera, Voromonas, and
Colpodella encode N-terminal extensions consistent with plastid-
targeting sequences (SI Appendix, Fig. S3) (the N terminus was
not sequenced from Alphamonas). This distribution suggests that
sufB was transferred to the nucleus at least twice independently
and represents no barrier to plastid genome loss in nonphoto-
synthetic myzozoans other than apicomplexans (Fig. 3C).
Nucleus-encoded clpC homologs were also identified in

multiple species (Perkinsus, dinoflagellates, Chromera, Vitrella,
Theileria, and Plasmodium, where it is plastid-targeted) (32) and
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once again grouped specifically with plastid-encoded and cyano-
bacterial orthologs in protein phylogenies (SI Appendix, Fig. S4).
Some species retained both nucleus and plastid-encoded paralo-
gues (Fig. 3C), and the origin of this paralogy is poorly resolved.
However, the existence of a single nucleus-encoded clpC in Per-
kinsus and Symbiodinium genomes strongly suggests that this
form is sufficient for function. Similarly, a single nuclear clpC
was identified in Colpodella, and the plastid-encoded form in
Chromera is likely a pseudogene, suggesting that clpCmay also not
represent an absolute barrier to plastid genome loss (although
Theileria has both but depends on the plastid copy).
Other than sufB and clpC, myzozoan plastid-encoded genes

of known function relate to transcription and translation (or
photosynthesis in chromerids and dinoflagellates) (6, 7), which
alone cannot account for genome retention. Plastid-encoded
tRNA-fMet was hypothesized to function in apicomplexan mito-
chondria (30); however, the absence of methionyl-tRNA for-
myltransferase in piroplasmids such as Theileria (33) suggests that
it is not essential. Plastid-encoded tRNA-Glu (30) is required for
tetrapyrrole synthesis in some organisms but is not required for
the C4 pathway used by apicomplexans, chrompodellids, or
Perkinsus (Fig. 3A). We predict that dinoflagellates import
tRNA-Glu from the nucleus. Plastid-encoded ORFs of unknown
function could also have indispensable roles, but there is no
evidence for this conclusion, and syntenic conservation suggests
that several correspond to ribosomal proteins (7). The recently
identified ycf93 represents the only exception in this respect
because it is expressed, syntenic among apicomplexans, and
plastid membrane-localized in Plasmodium falciparum (34).
However, ycf93 is fast-evolving and has not been unambiguously
identified outside apicomplexans: Vitrella contains a short ORF at
the same position, but it lacks the transmembrane region. Although
the function of the ycf93 remains unknown, it could contribute
to the retention of the apicomplexan plastid genomes (particularly
in the piroplasmids such as Theileria where clpC is the only other
plausible candidate), but there is no evidence that it necessitates
plastid genome dependence in chrompodellids.
Altogether, the discovery of nuclear-encoded sufB and clpC

creates a simple framework to explain plastid genome loss in
myzozoans: Once these genes are moved to the nucleus, the
plastid genome is dispensable if photosynthesis is lost (Fig. 3C).
The Perkinsus draft genome contains no plastid-encoded genes
or nucleus-encoded genes for plastid genome expression but
does have nucleus-encoded sufB and clpC. In chrompodellids,
sufB was relocated to the nucleus just after the divergence of
Vitrella, and clpC is either nuclear or unknown. No colpodellid
genes relating to plastid genome expression were found, and
genomic DNA sequence surveys of Alphamonas and Voromonas
(Materials and Methods) identified mitochondria-encoded genes,
but no traces of plastid genomes. About half of known dinoflagellates
are nonphotosynthetic, and the ancestral relocation of sufB and
clpC to the nucleus predicts that many or all of these species lack
plastid genomes as well. Ironically, the apicomplexan plastid ge-
nome has informed our thinking about why organellar genomes
persist, but it now seems that it is the exception among its closest
relatives and simply a coincidence of the retention of sufB and clpC.

Early Origin of Apicomplexan-Specific Characteristics in Their Free-
Living Relatives. The apicomplexan infection machinery is dis-
tinctive, of obvious interest due to their medical significance, and
potentially linked to the emergence of parasitism. However, once
again, we have no information on the distribution of proteins re-
lated to infection in free-living relatives. Accordingly, we carried out
a detailed search in the chrompodellid transcriptomes for proteins
related to key apicomplexan functions, especially those inferred to
be unique to the group and those linked to parasitism, based on
published studies (14, 15), OrthoMCL (35), and Apiloc (Materials
and Methods). This dataset included representative proteins that
are involved in cellular invasion, gliding motility, or division, or that
have original structural or functional properties (apicomplexan-
specific or horizontally acquired). Homologs were then sought in

all chrompodellids and other eukaryotes using similarity searches
and were sorted into five categories based on their distribution
(categories a–e in Fig. 4 A and B).
The first category (category a) includes proteins that may have

an apicomplexan-specific function but contain regions found in a
wide range of eukaryotes (including chrompodellids). The pres-
ence of these proteins alone is therefore not linked to the origin
of parasitism, and their roles in parasites and free-living relatives
cannot be assessed without direct functional evidence. Several
proteins associated with the apical complex itself belong to this
category, including rhoptry and microneme proteins (SI Appen-
dix, Table S4) and cytoskeletal SAS6L (36). If chrompodellid
homologs of these proteins are associated with structures for
invasion or feeding, it would support the homology of these
structures and the apical complex (37). Many apicomplexan
proteins involved in infection also belong to this category, in-
cluding MAC perforins (MACPFs), rhomboid proteases (ROMs),
calcium-dependent protein kinases (CDPKs), dynamins (DrpA,
DrpB), and conserved components of the gliding machinery, in-
cluding myosin anchor proteins GAP40 and GAP50 (Fig. 4B and
SI Appendix, Table S4). Unexpectedly, many proteins predicted to
be unique to apicomplexans by OrthoMCL or Wasmuth et al. (14)
also contain regions with significant similarity to other eukaryotes
(Fig. 4A). Similarly, out of 21 bacterial genes predicted to have
been acquired in the apicomplexan ancestor (SI Appendix, Table
S4) (15, 38), none are in fact apicomplexan-specific: 13 are found
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Fig. 4. Summary of “apicomplexan-specific” characteristics in their free-
living relatives. (A) Classification of four groups of apicomplexan proteins based
on distribution: horizontal gene transfers (HGTs), unique protein clusters
[OrthoMCL and Wasmuth et al. (14)], and proteins associated with infection
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in apicomplexan relatives (next paragraph) and 8 have even
broader distribution (Fig. 4A).
The second and third category of proteins (categories b and c)

are those found only in apicomplexans and other myzozoans.
Thirteen apicomplexan genes of bacterial origin are found in
apicomplexans and chrompodellids, and 6 of them also in other
myzozoans (SI Appendix, Table S5). These genes cover a range of
functions, including the plastid isoprenoid (IspH), tetrapyrrole
(FECH), and fatty acid (FabG) biosynthesis, glutamine (GlnA)
and folate metabolism (YgfA), nucleotide interconversion (PNP,
PUS, DUT), and malate and lactate dehydrogenases (Fig. 4B
and SI Appendix, Fig. S5). Chromerids also contain the multi-
subunit DNA polymerase (PREX) involved in apicomplexan
plastid genome replication (38); it is absent in colpodellids,
consistent with their lacking a plastid genome (SI Appendix, Fig.
S5). A unique clade of ribonucleotide reductase (R2e2) known
only from apicomplexans (39) is also found in chrompodellids,
and the phylogeny reveals it in fact originated by duplication
from the canonical eukaryotic type (SI Appendix, Fig. S6).
Chrompodellids also share an expansion in subtilisin proteases
(SI Appendix, Fig. S7), which are secreted from micronemes and
important for adhesion to host cell during infection (40). Lastly,
two groups of proteins are uniquely shared between apicom-
plexans and their closest relatives and potentially linked to
shared morphologies (SI Appendix, Table S6). The first are inner
membrane complex (alveolar) proteins, which are important in
cell division, establishing cell shape and polarity, and motility.
GAPMs (with six transmembrane regions) and ALP1 are found
in apicomplexans and chrompodellids (41, 42) whereas ISPs (43)
and alveolins are common to all myzozoans (the latter are also
present in ciliates but diversified in myzozoans). Interestingly,
chromerids, colpodellids, Perkinsus, and certain dinoflagellates
(3, 44) are known to multiply by a process similar to apicom-
plexan schizogony. The second group are oocyst wall proteins
(OWPs), which are exclusively found in species that form re-
productive/resting cysts: Cryptosporidium, coccidians, and all
chrompodellids (3, 12, 44, 45). Cell-wall maintenance has also
been linked to the presence of multidomain polyketide synthases
(PKSI/FASI) (26, 46), which are found in all myzozoans (Fig. 3A
and SI Appendix, Table S7) but specifically duplicated in the
ancestor of apicomplexans and chrompodellids based on phy-
logeny of their single-copy domains (FAAL, SDR) (Fig. 4B).
This finding suggests that apicomplexan and chrompodellid schi-
zogony and cyst production rely on common morphological and
molecular grounds and predate the emergence of parasitism.
The last two categories of proteins (categories d and e) are

those unique to apicomplexans and absent in all other eukar-
yotes. The large majority of them are specific to apicomplexan
subgroups including the most rhoptry, microneme, and dense
body proteins (SI Appendix, Table S4). Only a handful of these
proteins are shared by all apicomplexans: four rhoptry and three
secreted proteins (SI Appendix, Table S6), the apicomplexan
myosins class XIV including the gliding motor (MyoA) and,
perhaps, GAP45 (Fig. 4B). For most apicomplexan-specific pro-
teins, however, there is little or no functional information (Fig.
4A), and further investigation of chrompodellid genomes could
erode this already small list.
In contrast to acquisitions of complete proteins, apicomplexan

origin may be more strongly correlated with protein loss, family
diversification, and modification of protein structure. Well-
known examples of loss include de novo purine and tryptophan
biosynthesis, polyU tails in plastid transcripts (47), and con-
served eukaryotic components of flagellar transport (IFT20) (48)
and endosomal sorting complexes (ESCRTs; Vsp24, Vsp27, and
Vsp37A) (49). All of them are present in chrompodellids, con-
firming that their loss in the ancestor of apicomplexans coincides
with the origin of parasitism (Fig. 4B). Whether the same is true
for diversification of protein families and domain architectures
remains to be tested by using chrompodellid genomes. Few such
characteristics are known at the moment, however, and others
may be misleading. Four specific insertions in the apicomplexan

sortilin were suggested to account for its functional specificity—
an essential role in biogenesis of rhoptries and micronemes,
gliding, and host cell invasion (50)—but we find that three are
present in other eukaryotes and the last is specific to coccidians.
Overall, correlations observed in the absence of data from the

closest known free-living relatives of apicomplexans were more a
reflection of the distant relationship between apicomplexans and
available comparators, rather than a transition to parasitism, where
few changes can now be identified. Many “apicomplexan-specific”
genes are found in their free-living relatives, and the functions of
these proteins should be examined directly for a better under-
standing of their potential roles in the origin of parasitism.

Conclusions
Chromerids and colpodellids are a diverse but monophyletic
clade that is the closest known relative of the apicomplexan
parasites. Phylogenomics shows that photosynthesis has been lost
multiple times independently in these organisms, and re-
construction of plastid and cytosolic metabolism points to an
ancient, obligatory plastid dependency primarily related to bio-
synthesis of isoprenoids. We propose that plastid loss is rare and
dependent upon multiple factors: low requirements for metab-
olites made by plastids, low levels of inherent plastid metabolic
dependency, and exploitation environments rich in these
metabolites throughout the lifecycle. Plastid genome loss, in
contrast, is not related to function but can be traced to the re-
location of two genes: sufB and clpC. This simple model suggests
that independent loss of plastid genomes may turn out to be
common in myzozoans. Lastly, multiple apicomplexan-specific
genes (related, e.g., to division or oocyst walls) are shared with
relatives, and few genes can be linked with the origin of para-
sitism. This observation suggests that the evolution of parasitism
is not primarily linked to the acquisition of novel structures or
components, but rather to loss and modification of those already
present. Once established, the persistence of parasitism is likely
governed by very different factors: Adapting to the host and
immunity, in particular, would involve significant changes not
primarily related to loss of function. Further illumination of this
phase of apicomplexan evolution will require a similar strategy of
establishing a phylogenetic framework and more comprehensive
characterization of the earliest diverging apicomplexans, such
as gregarines.

Materials and Methods
Seventy-eight environmental 18S rDNA sequences were generated from
samples collected at several locations around Vancouver, BC, Canada, and 174
sequences were obtained from GenBank, after a removal of unrelated, short,
chimeric, fast-evolving, and nonoverlapping sequences in both sets (see SI
Appendix for details). The final reference dataset containing 106 eukaryotes
(SI Appendix, Fig. S1) was analyzed with all deep-branching environmental
sequences, those longer than 1,000 nucleotides (Fig. 1), or those branching
within apicomplexan clades (SI Appendix, Fig. S2). Culturing of chrompo-
dellids, sequencing, and assembling their transcriptomic and genomic sur-
veys are described in SI Appendix, SI Materials and Methods. The multiprotein
phylogenetic dataset (Fig. 2) was build by identifying conserved phylogenetic
markers (17) in predicted proteins from the five chrompodellids, a broad se-
lection of apicomplexans, and other eukaryotes. The final 85 proteins were
selected to minimize the missing information in chrompodellids: No complete
missing sequence was allowed in any of the five species, and fewer than 10 in
other taxa could be absent (23,111 total positions; 9% missing). Individual
trees of all 85 protein markers were analyzed to confirm their congruence and
identify possible contaminants. Sequences were aligned in MAFFT v. 7.127b
(L-INS-i algorithm), and variable sites were excluded in BMGE 1.1 using −h 0.4 −g
0.6 parameters. Phylogenies were calculated in RAxML 7.04 (GTR+GAMMA+4
model, 20 standard replicates, and 300 nonparametric bootstraps). Phylobayes
MPI v. 1.4f was run using the GTR+CAT model as two chains for 30 000 cycles
(burn-in of 5,000). Distribution of plastid proteins (Fig. 3) was determined
using custom eukaryotic and prokaryotic databases (SI Appendix, SI Materials
and Methods) and GenBank, BLASTp searches, and RAxML phylogenies (100
rapid bootstraps). Domains in PKSI/FASI polypeptides were identified using
National Center for Biotechnology Information Conserved Domain searches
and analyzed separately. Apicomplexan FabD fell at an unresolved position
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between bacteria and eukaryotes but is known to be plastid-localized. Several
dinoflagellate proteins had a distinct evolutionary origin from apicomplexans
[asterisks in Fig. 3: PPOX and FabF were related to viridiplantae, FeCH to
Bdellovibrio and red algae (SI Appendix, Fig. S5), and FabG to proteobacteria].
PhyML 3.0 (LG+GAMMA+4) phylogenies (aLRT branch supports, 10 random
starts) were used in datasets where many species or few positions (SI Ap-
pendix, Figs. S4 and S5) were available. Genomic DNA surveys were queried
for mitochondrion- and plastid-encoded genes: mitochondrial cox1, cox3,
and cob were detected in both samples, but no hits to plastid genes were
identified. Four strategies were used to identify proteins or protein clusters
that have apicomplexan-specific distribution or relate to apicomplexan
functions associated with parasitism (Fig. 4)—those predicted to have been
acquired by the apicomplexan ancestor from bacteria, those predicted to be
unique and ancestral to apicomplexans by OrthoMCL and Wasmuth et al.
(14), and those belonging to one or more of the following Apiloc categories
based on subcellular localization: Apical, Exported, Membrane, IMC, Oocyst

wall, and Golgi (a control for proteins of eukaryotic origin). Proteins
were sorted by eye based on distribution and 1e−5 evalue cutoff and
were refined by a second round of in-depth searches (SI Appendix, SI
Materials and Methods).
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