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5 Institut de Ciè ncies del Mar, CSIC, Barcelona, Catalonia, Spain
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Understanding the origin and evolution of the eukaryotic
cell and the full diversity of eukaryotes is relevant to
many biological disciplines. However, our current under-
standing of eukaryotic genomes is extremely biased,
leading to a skewed view of eukaryotic biology. We
argue that a phylogeny-driven initiative to cover the full
eukaryotic diversity is needed to overcome this bias. We
encourage the community: (i) to sequence a representa-
tive of the neglected groups available at public culture
collections, (ii) to increase our culturing efforts, and (iii)
to embrace single cell genomics to access organisms
refractory to propagation in culture. We hope that the
community will welcome this proposal, explore the
approaches suggested, and join efforts to sequence
the full diversity of eukaryotes.

The need for a phylogeny-driven eukaryotic genome
project
Eukaryotes are the most complex of the three domains of
life. The origin of eukaryotic cells and their complexity
remains one of the longest-debated questions in biology,
famously referred to by Roger Stanier as the ‘greatest
single evolutionary discontinuity’ in life [1]. Thus, under-
standing how this complex cell originated and how it
evolved into the diversity of forms we see today is relevant
to all biological disciplines including cell biology, evolu-
tionary biology, ecology, genetics, and biomedical research.
Progress in this area relies heavily on both genome data
from extant organisms and on an understanding of their
phylogenetic relationships.

Genome sequencing is a powerful tool that helps us to
understand the complexity of eukaryotes and their evolu-
tionary history. However, there is a significant bias in
eukaryotic genomics that impoverishes our understanding
of the diversity of eukaryotes, and leads to skewed views of

what eukaryotes even are, as well as their role in the
environment. This bias is simple and widely recognized:
most genomics focuses on multicellular eukaryotes and
their parasites. The problem is not exclusive to eukaryotes.
The launching of the so-called ‘Genomic Encyclopedia of
Bacteria and Archaea’ [2] has begun to reverse a similar
bias within prokaryotes, but there is currently no equiva-
lent for eukaryotes. Targeted efforts have recently been
initiated to increase the breadth of our genomic knowledge
for several specific eukaryotic groups, but again these tend
to focus on animals [3], plants [4], fungi [5], their parasites
[6], or opisthokont relatives of animals and fungi [7].
Unfortunately, a phylogeny-driven initiative to sequence
eukaryotic genomes specifically to cover the breadth of
their diversity is lacking. The tools already exist to over-
come these biases and fill in the eukaryotic tree, and we
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Glossary

18S rDNA: genes encoding the RNA of the small ribosomal subunit are found

in all eukaryotes in many copies per genome. They are also highly expressed

and its nucleotide structure combine well-conserved and variable regions.

Because of these characteristics 18S rDNA has been used as a marker to

identify and barcode eukaryotes at the species or genus level (with some

exceptions). It is also the most widely used eukaryotic phylogenetic marker.

Culturing bias: cultured microbial strains do not necessarily represent, and

usually are not, the dominant members of the environment from which they

were isolated. This bias affects bacteria, viruses, and protists. The culturing

bias can be the result of a lack of continuous culturing efforts, or inadequate

isolation and/or culturing strategies – or because, for whatever reason, some

species in the environment may be refractory to isolation and culturing.

Genomes OnLine Database (GOLD): an online resource for comprehensive

access to information regarding genome and metagenome sequencing

projects, and their associated metadata (http://www.genomesonline.org/).

Operational taxonomic unit (OTU): an operational definition of a species or

group of species. In microbial ecology, and in particular protist ecology, this

operational definition is generally based in a percentage similarity threshold of

the 18S rDNA (e.g., OTU97 refers to a cluster of sequences with >97% similarity

that are inferred to represent a single taxonomic unit).

Single amplified genomes (SAGs): the products of single cell whole-genome

amplification that can be further analyzed in similar ways to DNA extracts from

pure cultures.

Single cell genomics (SCG): a method to amplify and sequence the genome of a

single cell. The method consists of an integrated pipeline that starts with the

collection and preservation of environmental samples, followed by physical

separation, lysis, and whole-genome amplification from individual cells. This is

followed by sequencing of the resulting material. SCG is a powerful complement

to culture-based and environmental microbiology approaches [23].
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therefore hope that researchers will be inspired to explore
these tools and embrace the prospect of working towards a
community-driven initiative to sequence the full diversity
of eukaryotes.

The multicellular effect
It is not surprising that the first and main bias in the study of
eukaryotes arises from our anthropocentric view of life.
More than 96% of the described eukaryotic species are either
Metazoa (animals), Fungi, or Embryophyta (land plants) [8]
(Figure 1A) – which we call the ‘big three’ of multicellular
organisms (even though the Fungi also include unicellular
members such as the yeasts). However, these lineages only
represent 62% of the 18S rDNA (see Glossary) Genbank
sequences (Figure 1B), which is of course a biased sample, or
23% of all operational taxonomic units (OTUs) in environ-
mental surveys (Figure 1C). This bias is not new; research
has historically focused on these three paradigmatic eukary-
otic kingdoms, which are indeed important, but are also
simply more conspicuous and familiar to us. In genomics
this bias is amplified considerably: 85% of the completed or
projected genome projects {as shown by the Genomes On-
Line Database (GOLD) [9]} belong to the ‘big three’
(Figure 1D). Moreover, even within these groups there
are biases. For example, many diverse invertebrate groups
suffer from a lack of genomic data as keenly as do microbial
groups. This makes for a pitiful future if we aim to under-
stand and appreciate the complete eukaryotic tree of life. If
we do not change this trend we risk neglecting the majority
of eukaryotic diversity in future genomic or metagenomic-
based ecological and evolutionary studies. This would pro-
vide us with a far from realistic picture.

The ‘multicellular bias’ is the most serious, but is not
alone. The eukaryotic groups with most species deposited
in culture collections and/or genome projects are also
biased towards either those containing mainly photo-
trophic species or those that are parasitic and/or economi-
cally important (Figure 2). For example, both
Archaeplastida and Stramenopila have more cultured spe-
cies than other eukaryotes as a result of a long phycological
tradition and the well-provided phycological culture collec-
tions [10], and also because they are easier to maintain in
culture than heterotrophs. In both cases this translates to a
comparatively large number of genome projects: several
genomic studies target photosynthetic stramenopiles
[11,12] and, owing to their economic relevance in the
agriculture, the peronosporomycetes [13]. In addition,
the apicomplexans within the Alveolata are also relatively
well studied at the genomic level because they contain
important human and animal parasites [14] such as Plas-
modium and Toxoplasma. If we look instead at the number
of sequenced strains rather than species, these biases are
increased further (Figure 3). As a result, a significant
proportion of the retrieved cultures and genomes corre-
spond to different strains of the same dominant species.
Therefore, we have a pool of species that have been redun-
dantly cultured and sequenced.

The missing branches of the eukaryotic tree of life
Although we lack an incontrovertible, detailed phylogenet-
ic tree of the eukaryotes, a consensus tree is emerging
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Figure 2. Relative representation of eukaryotic supergroup diversity in different

databases. (excluding metazoans, fungi, and land plants). (A) Percentage of

described species per eukaryotic supergroup according to the CBOL ProWG. (B)

Percentage of 18S rDNA OTU97 per eukaryotic supergroups in GenBank. (C)

Percentage of environmental 18S rDNA OTU97 per eukaryotic supergroups. (D)

Percentage of species with a cultured strain in any of the analyzed culture collections.

Culture data are from five large protist culture collections (n = 3084) (the American

Type Culture Collection, Culture Collection of Algae and Protozoa [24], the Roscoff

Culture Collection [25], the National Center for Marine Algae and Microbiota [26] and

the Culture Collection of Algae at Göttingen University [27]). (E) Relative numbers of

species with a genome project completed or in progress according to GOLD, per

eukaryotic group. Data from panels A–C are from [8]. Data from panels D and E are

publicly available and the taxonomic analysis can be found in the supplementary

data online. Abbreviations: CBOL ProWG, Consortium for the Barcode of Life Protist

Working Group; Env 18S, environmental 18S rDNA sequences; GOLD, Genomes

OnLine Database; OTU97, operational taxonomic unit (>97% sequence identity).
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Figure 1. Relative representation of metazoans, fungi, and land plants versus all

the other eukaryotes in different databases. (A) Relative numbers of described

species according to the CBOL ProWG (n = 2 001 573). (B) Relative numbers of 18S

rDNA OTU97 in GenBank (n = 22 475). (C) Relative number of environmental 18S

rDNA OTU97 in GenBank (n = 1165). (D) Relative number of species with a genome

project completed or in progress according to GOLD, per eukaryotic group

(n = 1758). Data in panels A–C are from [8]. Abbreviations: CBOL ProWG,

Consortium for the Barcode of Life Protist Working Group; GOLD, Genomes

OnLine Database; OTU97, operational taxonomic unit (>97% sequence identity).
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thanks to molecular phylogenies [15]. The five monophy-
letic supergroups of eukaryotes are summarized in Box 1.
The distribution of cultured and sequenced species over the
tree provides a broad overview of our current knowledge of

eukaryotic diversity (Figure 4). However, a quarter of the
represented lineages lack even a single culture in any of
the analyzed culture collections and, notably, 51% of them
lack a genome. The most important gaps are within the
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Figure 3. Eukaryotic diversity distribution among the analyzed databases. (A) The 25 speciesa with the most strains represented in the analyzed culture collections. (B) The

25 speciesa with the most ongoing genome projects. (C) The 25 most abundant SAGs OTU97 in the analyzed dataset. Abbreviations: MAST, marine stramenopile; OTU97,

operational taxonomic unit (>97% sequence identity); SAG, single amplified genome.
aSome strains are not described at the species level and have been grouped by genus. Therefore they may represent more than a single species.
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Rhizaria, the Amoebozoa, and the Stramenopila, where
many lineages are still underrepresented. However, many
other lineages that lack any representative genome se-
quence are also found in the relatively well-described
Opisthokonta and Excavata groups. This map is likely to
be incomplete because several genome projects may not be
reflected in the GOLD database, and because many cul-
tures are not deposited in culture collections, but the
overall trends probably afford an accurate representation
of the biases we currently face.

Filling the gaps: how to
Although there may not be bad choices when selecting
organisms for genome sequencing, there are certainly
better choices if we aim to understand eukaryotic diversity.
We argue that at least some of the effort should be specifi-
cally directed towards filling the gaps in the eukaryotic
tree of life, focusing on those lineages that occupy key
phylogenetic positions. How can that be done? One option
is to sequence more cultured organisms. In fact, 95% of
protist species in culture are not yet targeted for a genome
project (Figure S1 in the supplementary data online).
Thus, by obtaining the genome of some available cultured
lineages that have not yet been sequenced, we could easily
fill some of the important gaps of the tree, including some
heterotrophic Stramenopila, Amoebozoa, and Rhizaria.
However, selecting species that are available in culture
is itself strongly biasing, and most lineages remain without
any cultured representative [16]. Publicly accessible

protist collections [such as the American Type Culture
Collection (ATCC) and the Culture Collection of Algae
and Protozoa (CCAP); summarized in Box 2] are consid-
erably smaller than their bacterial or fungal counter-
parts. Among the reasons is the lack of a required,
systematic deposit of newly described taxa, in contrast
to the situation for bacteria [17]. Notably, and unfortu-
nately, half of the species with genome projects completed
or in progress are not deposited in any of the five analyzed
publicly accessible culture collections. To avoid more ‘lost
cultures’ in the future the community should establish
and adopt standard procedures similar to those used in
bacteriology to release cultures to protist collections. The
whole community will benefit from this in the short and
long term. In addition, there is an inherent technical bias
in culturing, as well as a bias in culturing efforts. For
example, phototrophic representatives of Stramenopila
and Alveolata tend to have more cultures available than
their heterotrophic counterparts (Figure 4). Indeed,
70.6% of the most common protist strains present in
culture collections are phototrophic organisms
(Figure 3). Therefore there is a need both to increase
the culturing effort for a wider variety of environments
and to develop novel and alternative culture techniques to
retrieve refractory organisms [18], both of which take
time, energy, and funding. Importantly, culture collec-
tions will need to be supported so that they can take on the
challenge of maintaining more cultures and open their
scope to include more difficult organisms that tend to be

Box 1. The five eukaryotic supergroups

Thanks to molecular phylogenetics, to ultrastructural analyses, and to

the efforts of many researchers, we have in recent years advanced

significantly our understanding of the tree of eukaryotes. According to

the most recent consensus taxonomy [28], the eukaryotes can be

divided into five monophyletic supergroups. We here introduce these

supergroups, detailing some specific features of each.

Amoebozoa: this group consists of amoeboid organisms, most of

them possessing a relatively simple life cycle and limited morpholo-

gical features, as well as a few flagellated organisms [30]. They are

common free-living protists inhabiting marine, freshwater, and

terrestrial environments. Some well-known amoebozoans include

the causative agent of amoebiasis (Entamoeba histolytica) and

Dictyostelium sp., a model organism used in the study of the origin

of multicellularity.

Archaeplastida: also known as ‘the green lineage’ or Viridiplantae,

this group comprises the green algae and the land plants. The

Archaeplastida is one of the major groups of oxygenic photosynthetic

eukaryotes [31]. Green algae are diverse and ubiquitous in aquatic

habitats. The land plants are probably the most dominant primary

producers on terrestrial ecosystems. Both green algae and land plants

have historically played a central role in the global ecosystem.

Excavata: the group Excavata was proposed based of shared

morphological characters [32], and was later confirmed through

phylogenomic analyses [33]. Most members of this group are

heterotrophic organisms, among them some well-known human

parasites such as Trichomonas vaginalis (the agent of trichomoniasis)

and Giardia lamblia (the agent of giardiasis), as well as animal

parasites such as Leishmania sp. (the agent of leishmaniasis) as well

as Trypanosoma brucei, and Trypanosoma cruzi (the agents of

sleeping sickness and Chagas disease respectively).

Opisthokonta: the opisthokonts include two of the best-studied

kingdoms of life: the Metazoa (animals) and the Fungi. Recent

phylogenetic and phylogenomic analyses have shown that the

Opisthokonta also include several unicellular lineages [34]. These

include the Choanoflagellata (the closest unicellular relatives of the

animals) and the Ichthyospora (that include several fish parasites that

impact negatively on aquaculture).

SAR (Stramenopila - Alveolata, and Rhizaria): three groups that

have been historically studied separately. Phylogenetic analyses,

however, have shown that those three groups share a common

ancestor, forming a supergroup known as SAR [36]. This eukaryotic

assemblage comprises the highest diversity within the protists.

Stramenopila: also known as heterokonts, the stramenopiles

include a wide range of ubiquitous phototrophic and heterotrophic

organisms [37]. Most are unicellular flagellates but there are also

some multicellular organisms, such as the giant kelps. Other relevant

members of the Stramenopila are the diatoms (algae contained within

a silica cell wall), the chrysophytes (abundant in freshwater environ-

ments), the MAST (marine stramenopile) groups (the most abundant

microbial predators of the ocean), and plant parasites such as the

Peronosporomycetes.

Alveolata: a widespread group of unicellular eukaryotes that have

adopted diverse life strategies such as predation, photoautotrophy,

and intracellular parasitism [29]. They include some environmen-

tally relevant groups such as the Syndiniales, the Dinoflagellata,

and the ciliates (Ciliophora), as well as the Apicomplexa group that

contains notorious parasites such as Plasmodium sp. (the agent of

malaria), Toxoplasma sp. (the agent of toxoplasmosis), and

Cryptosporidium sp.

Rhizaria: this is a diverse group of mostly heterotrophic unicellular

eukaryotes including both amoeboid and flagellate forms [35]. Two

iconic protist groups, Haeckel’s Radiolaria and the Foraminifera, are

members of the Rhizaria. Foraminifera have been very useful in

paleoclimatology and paleoceanography due to their external shell

that can be detected in the fossil record.

Incertae sedis: Latin for ‘of uncertain placement’, a term used to

indicate those organisms or lineages with unclear taxonomical

position.
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excluded from existing collections, in particular  hetero-
trophs.

A complementary option to increase the breadth of
eukaryotic genomics is to use single cell genomics (SCG)
[19]. Although the technology is still developing, this is
probably the best way we have today to retrieve genomic
information from abundant microbial eukaryotes that are
ecologically relevant but are refractory to being cultured.
For example, the single amplified genomes (SAGs) from

different global oceanic sites obtained during the Tara
Oceans cruise (M.E.S., unpublished data) fill reasonably
well the culture and genomic gaps that some of the most
abundant groups in the oceans suffer from (Figure 4). In
particular, a significant fraction of the SAGs correspond to
uncultured organisms such as the marine stramenopiles
MAST-4 and MAST-7 [20], chrysophyte groups H and G
[21], and the Syndiniales [22]. Importantly, sequence tag-
ging shows that only 10% of the SAGs are present in any
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Figure 4. The tree of eukaryotes, showing the distribution of current effort on culturing, genomics, and environmental single amplified genome (SAG) genomics for the

main protistan lineages. Eukaryotic schematic tree representing major lineages. Colored branches represent the seven main eukaryotic supergroups, whereas grey

branches are phylogenetically contentious taxa. The sizes of the dots indicate the proportion of species/OTU97 in each database. Culture data are from the analyzed publicly

available protist culture collections (n = 3084). Genome data were extracted from the Genomes OnLine Database (GOLD) (n = 258) [9]. SAGs of OTU97 correspond to those

retrieved during the Tara Oceans cruise (n = 158) (M.E.S., unpublished data). Taxonomic annotation of all datasets is based on [28]. The ‘big three’ (in bold) have been

excluded from this analysis. Abbreviation: OTU97, operational taxonomic unit (>97% sequence identity).
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culture collection, and only 2.5% have an ongoing genome
project (based on cultured taxa). It is worth mentioning
that the SAGs so far available represent only marine
microeukaryotes. Thus, although the analyzed SAGs cer-
tainly overcome part of the bias, they do not cover the full
diversity of eukaryotes.

Given the potential of SAGs to improve further our
understanding of eukaryotic diversity, an important ques-
tion to ask is whether high-quality genome data can be
acquired from SAGs [19]. Currently, there seems to be a
diversity of outcomes when using SAGs owing to the bias
introduced by the whole-genome amplification procedure.
The completeness range of the retrieved genome varies from
less than 10% to a complete genome, and depends on the
intrinsic properties of the cell studied as well as on the
amplification method [23]. Culture certainly provides a
more reliable way to obtain a genome of high quality at
present, and a species in culture also provides researchers
with a direct window to the biology of the organism and post-
genomic research. Auto-ecological experiments, ultrastruc-
ture analyses, and even functional experiments can all be
performed in culture, thereby providing a deeper context for
the genome and the organism. However, in light of the lack of
data we currently face, and the unlikelihood that a signifi-
cant increase in resources for cultivation will soon appear,
we argue strongly that genomic sequencing of SAGs is an
important complement to culture-based research in further-
ing our understanding of eukaryotic diversity.

Make the tree thrive: a call to action
Genome sequences have cast invaluable light on the clas-
sification of organisms, notably in many cases where par-
ticular species were misclassified (Box 3). However, the
available genome sequences of eukaryotes do not inform us
only about the biology of the particular organism. They also

make significant contributions to our understanding of
eukaryotic biology in general, and to large-scale evolution-
ary and ecological processes. Nevertheless, for this poten-
tial to be completely fulfilled we must sample broadly, and
there are currently important gaps in the diversity of
eukaryotic genome sequences that undermine our efforts
to capitalize on this potential. Understanding the whole of
eukaryotic diversity will doubtless contribute to our un-
derstanding of specific biological questions, including some
of our more pernicious problems in medicine, agriculture,
evolution, and ecology.

We propose that filling in the eukaryotic tree at the
genomic level based on phylogenetic diversity should be a
priority for the community. We also argue that this can be
achieved by a combination of three complementary
approaches. First, at least one genome from underrepre-
sented lineages from which cultures are available should
be sequenced. This is a straightforward problem, requiring
phycologists, protistologists, culture collection curators,
and genomic sequencing centers to coordinate efforts
and expertise to choose the best target taxa and sequencing
strategies. Second, efforts to culture diverse organisms
should be supported, by sampling additional areas of the
planet, developing novel techniques to include more recal-
citrant species (especially heterotrophs), and by rewarding
this difficult but essential task, especially in younger
researchers before they conclude en masse that such crucial
work is a professional dead-end. Such efforts are time-
consuming and have a built-in failure rate that makes
them risky, and therefore policy changes will be helpful
in order that funding agencies, universities, and research
centers recognize the value of such work independently of
the publication outcome. Finally, microbial ecologists and
genomic centers should embrace the use of SCG and con-
tinue to improve the technology, which we believe will be

Box 2. Protist culture collections

Culture collections are cornerstones for the development of all

microbiological disciplines. Cultures are key to the establishment of

model organisms and, therefore, to a better understanding of their

biology. Below we describe some of the major protistan collections.

ATCC (American Type Culture Collection; Manassas, Virginia,

USA): a private, non-profit biological resource center established in

1925 with the aim of creating a central collection to supply

microorganisms to scientists all over the world (http://www.atcc.org).

ATCC collections include a great variety of biological materials such

as cell lines, molecular genomics tools, microorganisms, and

bioproducts. The microorganism collection includes more than 18

000 strains of bacteria, 3000 different types of viruses, over 49 000

yeast and fungal strains, and 2000 strains of protists.

CCAP (Culture Collection of Algae and Protozoa; Oban, Scotland,

UK): a culture collection funded by the UK Natural Environmental

Research Centre (NERC) that contains algae and protozoa from both

freshwater and marine environments. The foundations of CCAP

(http://www.ccap.ac.uk) were laid by Prof. Ernst Georg Pringsheim

and his collaborators and the cultures they established at the

Botanical Institute of the German University of Prague in the 1920s.

Pringsheim moved to England where the collection was expanded

and taken over by Cambridge University in 1947. In 1970 these

cultures formed the basis of the Culture Centre of Algae and Protozoa

that later became the modern CCAP.

NCMA (Provasoli-Guillard National Center for Marine Algae and

Microbiota, East Boothbay, Maine, USA): this integrated collection of

marine algae, protozoa, bacteria, archaea, and viruses was named a

National Center and Facility by the US Congress in 1992. The NCMA

(http://ncma.bigelow.org) originated from private culture collections

established by Dr Luigi Provasoli at Yale University and Dr Robert R.L.

Guillard at Woods Hole Oceanographic Institution. When it was born

in the 1980s it was known as the Culture Collection of Marine

Phytoplankton (CCMP) and provided to the community algal cultures

of scientific interest or for aquaculture.

RCC (Roscoff Culture Collection; Roscoff, France): this collection

(http://www.roscoff-culture-collection.org) is located at the Station

Biologique de Roscoff and is closely linked to the Oceanic Plankton

group of this institution. They maintain more than 3000 strains of

marine phytoplankton, especially picoplankton and picoeukaryotes

from various oceanic regions. Most of the strains are available for

distribution whereas others are in the process of being described.

SAG (Sammlung von Algenkulturen: Culture Collection of Algae at

Gö ttingen University, Gö ttingen, Germany): the SAG is a non-profit

organization maintained by the University of Göttingen (http://

www.epsag.uni-goettingen.de). The collection primarily contains

microscopic algae and cyanobacteria from freshwater or terrestrial

habitats, but there are also some marine algae. With more than 2400

strains, the SAG is among the three largest culture collections of

algae in the world. Prof. Pringsheim is also the founder of the SAG: it

was initiated in 1953 when he returned to Göttingen after his time as a

refugee scientist in England. From then on the Pringsheim algal

collection has been growing and evolving into the service collection

we know nowadays.
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the key to filling in missing parts of the tree in the short
term. To coordinate all these efforts, funding agencies
should also support the development of community
resources such as publicly accessible culture collections
and the maintenance of key taxa that are difficult to keep.

We believe strongly that the time is ripe to reverse the
genome sequencing bias in the tree of eukaryotes. We now
have in our hands all the elements needed to change this
skewed view and further our understanding of eukaryotic
biology and evolution. All that needs to change is the will
and a joint coordinated initiative. Thus, we hope that the
eukaryotic community will welcome this proposal to build a
representative and diverse ‘Genomic Encyclopedia of
Eukaryotes’ and collaborate to make this happen.

Appendix A. Supplementary data
Supplementary data associated with this article can be found, in the online
version, at http://dx.doi.org/10.1016/j.tree.2014.03.006.
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