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The complete mitochondrial genome from an unidentified

Phalansterium species.

Abstract

We describe the complete sequence and organization of the mitochondrial
genome from an unidentified species of Phalansterium. This is the
first sequenced mitochondrial genome of a member of Variosea clade
(Amoebozoa, Conosa). The sequence was assembled from shotgun
reads of DNA from a mixed culture containing the euglenid Monomorphina
aenigmatica and an amoebozoan that we demonstrate here is closely
related to Phalansterium (in nuclear SSU rRNA phylogenies, it branches
between two sequences from described species of Phalansterium).
Sequence assembly resulted in two distinct mitochondrial genome types,
one fragmented and euglenid-like, and the second a single circular-
mapping contig of 53,614 bp with an amoebozoan-like set of genes. The
Phalansterium sp. mitochondrial genome is gene-rich and densely packed,
with a large number of tRNAs and an unusually low ratio of identifiable
protein-coding genes to unidentified ORFs. These ORFs potentially encode
ribosomal proteins exhibiting a divergent character at the sequence level,
and whose identification may be hindered by the presence of RNA editing
in Phalansterium mitochondria, as inferred from numerous acceptor stem
mis-matches typical of amoebozoan tRNA 5’ editing.
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Introduction

The genus Phalansterium was established by Cienkowsky [1] for
two species of colonial uniciliate flagellates: Monas consociatum
Fresenius 1858,
newly described species P intestinum, transferred eight years

renamed Phalansterium consociatum, and

later to the genus Spongomonas because it was shown to have
two closely apposed flagella instead of one [2]. Cienkowsky
observed that, together, Phalansterium species fashion their
living place together almost like a society in ‘heaps of jelly’,
hence the name Phalansterium referring to “le Phalanstere”, a
palace-like building capable of housing four hundred families
imagined in the early 19" century by French utopian socialist
Charles Fourier as part of his ‘Théorie Sociale’ [3]. The genus
Phalansterium currently unifies four species - Phalansterium
digitatum [2], P. solitarium [4], P. filosum (Cavalier-Smith and
Chao, in [5]) and the type species P. consociatum [1]. Of those,
the first three species are relatively well studied (Cavalier-Smith
and Chao in [5], [6,7]) whereas P. consociatum on the other hand
was never reliably re-isolated and Hibberd [6] suggested that it
may be co-specific with P, digitatum.

Phalansterium cells are uni-flagellate, with the flagellum
partiallfy surrounded by a collar-like structure and associated
with a single basal body that is situated at the apex of a radiating
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cone of microtubules [6,7]. This relatively simple structure led
to the proposal that Phalansterium might represent a primitive,
early-branching lineage [8]. However, molecular studies show
that Phalansterium branches within Amoebozoa, in the clade
named Variosea within the subphylum Protamoebae [9]. The
phylogenetic position of Variosea was not clear for some time
but members of this clade tend to group with archamoebae and
mycetozoans rather than with typical lobose amoebae [10-13].
Cavalier-Smith [14] suggests transfer of the class Variosea to
the subphylum Conosa Cavalier-Smith 1998, unifying them with
two major amoebozoan groups, mycetozoans (dictyostelids,
physarids and some of protostelids) and archamoebae
(pelobionts and Entamoeba). Close relationships of Variosea
with other Conosa were confirmed in further studies [15-20] and
also are recognised in the systems of amoebae by Smirnov and
Cavalier-Smith [5].

The mitochondria of Variosea are of some interest because
members of one of the major conosean groups, Mycetozoa,
have relatively normal mitochondria, while members of the
other group, Archamoebae, are anaerobes possessing highly
reduced mitosomes [21]. However few mitochondrial genomes
of Amoebozoas are sequenced and most are from mycetozoans
while other groups are virtually not covered [22-25]. Here we
describe the complete mitochondrial genome from an unidentified
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species of Phalansterium (the first sequenced mtDNA from a
variosean representative) found as a contaminating species in a
culture of a photosynthetic euglenid.

Materials and methods

Genome sequencing.

UTEX 1284 culture containing Monomorphina aenigmatica (and
subsequently also found to contain the Phalansterium species)
was obtained directly from the University of Texas Culture
Collection, cultured, and purified DNA prepared for sequencing
as described [26]. 320,000,000 filtered reads corresponding to
16,000,000 pairs of raw sequence were assembled in parallel
with Ray [27] version 2.0.0 rc4, as described [26]. From the
1,849,947 contigs generated (546,420,088 bp total), 130,292
contigs larger than 500 bp (241,607,848 bp total) were searched
for sequences similar to genes expected to be encoded in a
mitochondrial genome. Two general types of contig resulted:
small linear mapping contigs with genes sharing high similarity
to Euglena gracilis mitochondrial genes, and a single, 53,614 bp
circular mapping contig (71X coverage) with sequences sharing
closest similarity to amoebozoan mitochondria.

Genome annotation.

Open reading frames were located on the circular-mapping
Phalansterium sp. mitochondrial genome sequence with Artemis
14 [28] and known genes identified by BLAST homology searches
[29] against the NCBI non-redundant databases. ORFs showing
low or no similarity with known sequences were further queried
against the NCBI databases using iterative PSI-BLAST searches
[30]. Genes coding for tRNAs were positioned with tRNAcan-SE
[31] whereas genes coding for ribosomal rRNAs were located by
BLAST homology searches. Artemis annotations were converted
to TBL format using the built-in tools, the TBL file further
manually curated, and the accession number generated with
NCBI's TBL2ASN. The physical map was generated from the
accession number using OGDRAW 1.2 [32]. The Phalansterium
sp. mitochondrial genome has been deposited in GenBank
under accession number KC121006.

Phylogenetic analysis.

The number of species present in what was thought to be a uni-
eukaryotic culture was inferred by examining the phylogeny of all
sampled nuclear small subunit ribosomal RNA (SSU rRNA) genes.
From 546,420,088 bp of sequence, three types were found: a
10.8 kb contig (99,073 reads; 910X coverage) corresponding to
the euglenid Monomorphina aenigmatica, a 5.8 kb contig (3,021
reads, 52X coverage) closely related to Drosophila melanogaster,
and a 8.5 kb contig (1,573 reads; 19X coverage) with the closest
match to Phalansterium (deposited under GenBank accession
number KF539978).

Phalansterium-like sequences were aligned to an extensive
alignment covering all major groups of eukaryotes using SeaView
4 [33]; the alignment was manually polished and Maximum
Likelihood phylogenies were inferred with PhyML 3.0 [34] using
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a nucleotide mask (863 positions). For greater resolution, 89
species (1049 nucleotide positions) representing all branches of
Amoebozoa and a limited number of outgroups were selected
and the phylogeny reconstructed with PhyML under the GTR
model [35] of nucleotide substitution with 8 gamma categories
of among-site rate heterogeneity and optimized proportions
of invariable sites; a total of 100 bootstrap replicates were
performed and mapped on the best likelihood tree. Bayesian
analysis was performed using MrBayes 3.2 [36], GTR model
with gamma correction for intersite rate variation (8 categories)
and the covarion model. The trees were run as two separate
chains (default heating parameters) for 4.8 million generations,
by which time they had ceased converging (final average
standard deviation of the split less than 0.01); the first 25% of
the generations were discarded for burn-in.

To confirm that the amoebozoan mitochondrial genome
is derived from the same source, we also reconstructed the
phylogeny of mitochondrion-encoded cytochrome oxidase b
(Cob) from a wide variety of eukaryotes (339 taxa total). Other
genes and a concatenation of mitochondrial genes were also
examined, but were found to have limited resolution or available
species diversity (especially of amoebozoans and euglenids,
both of which were important to have represented). Cob protein
sequences were retrieved from NCBI’'s GenBank database,
aligned with the L-INS-i algorithm implemented in MAFFT 6.956
[37], and then filtered with trimAl 1.4 [38] with the following
parameters: -gt 0.6, -st 0.001, -cons 60. Maximum Likelihood
phylogenetic reconstructions were performed on the filtered
dataset with PhyML 3.0 under the LG+I'4+F model of amino
acid substitution.

Results and discussion

A complete mitochondrial genome from an amoebozoan
related to Phalansterium.
We recently reported the complete plastid genome from
shotgun sequencing of Monomorphina aenigmatica strain
UTEX 1284 [26]. This culture is not axenic, so we used the
shotgun sequence data to assess its species diversity by
characterizing all nuclear SSU rRNA-encoding contigs. From
320,000,000 filtered reads assembled into 130,292 contigs
over 500 bp in length (corresponding to 241,607,848 bp of
sequence), only three distinct nuclear SSU rRNA types could
be found: that of M. aenigmatica, a 5.8 kb fragment related to
Drosophila melanogaster, and a third type corresponding to a
novel sequence closely related to Phalansterium solitarium.
Based on this deep sequencing survey, we conclude the culture
was dominated by M. aenigmatica and that the other two
organisms were low-level contaminants, with the novel strain
of Phalansterium present at about 2% of the dominant species
(the few Drosophila sequences are interpreted as a low level
sequencing contaminant as is common with such volumes of
sequence).

Phylogenetic analyses on a representative alignment
containing all major groups of eukaryotes (tree not shown)



The complete mitochondrial genome from an
unidentified Phalansterium species.

indicated that the newly identified Phalansterium SSU sequence
robustly branches within the Amoebozoa, where it always
clusters (with 100% support by all methods used) with two
named Phalansterium species. This position is genuine, and is
confirmed by analyses performed with an expanded number of
amoebozoansequences (Figure 1). Inthe latter tree, Phalansterium
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species appear as a group inside the Variosea clade, with
Filamoeba species and a number of environmental sequences
as nearest neighbors. This position is not supported statistically,
however, and the Phalansterium clade sometimes appears
basal to the entire Variosea. Overall in our analysis, Variosea,
together with dictyostelids, mixogastrians and archamoebians
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Figure 1. 18S rDNA phylogenetic tree showing the position of Phalansterium sp. (present strain) amongst Amoebozoa. PP/Bootstraps over 0.5/50%
are indicated (even if only one of the two values exceeds the thresholds); dashes indicate branches not reproduced in the corresponding

Bayesian or ML analyses.
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form a monophyletic group corresponding to Conosa while
Lobosa appears paraphyletic. All major groups of Amoebozoa
are represented in our trees in the same configuration as in
Smirnov et al. [5] and the class Discosea remains paraphyletic.
The new sequence branched within the Phalansterium lineage,
specifically related to Phalansterium solitarium to the exclusion
of Phalansterium filosum with complete statistical support, but
showing clear differences with both species (the new sequence
differs from existing ones at 1.8% and 5.5%, whereas they differ
from one another by 6.3%). The phylogeny therefore supports
the conclusion that the novel strain represents a new species
of Phalansterium, and we henceforth refer to it (in the absence
of morphological data allowing description and naming) as
Phalansterium sp.

Searching the assembled sequence (filtered for Drosophila
contamination) for contigs derived from mitochondrial genomes
yielded not one, but two distinct mitochondrial types, as
expected. The first is a collection of small linear contigs
encoding genes with high similarity to mitochondrial genes from

Jean-Francois Pombert et al.

Euglena gracilis. We infer that this collection is derived from the
M. aenigmatica mitochondrial genome (not shown). The second
type formed a single, gene-rich 53,614 bp circular-mapping
contig (Figure 2). Phylogenetic inferences based on the analysis
of mitochondrial cytochrome b (Figure 3) supported a close
relationship between this protein and amoebozoan homologues,
and we accordingly infer the genome encoding this protein to be
that of Phalansterium sp.

The Phalansterium sp. mitochondrion has an ancestral,
gene-rich genome.

The Phalansterium sp. mitochondrial genome is in some ways
similar to that of other amoebozoans, but in others is unique
(Figure 2, Table 1). It falls within the size range of other sequenced
amoebozoan mitochondrial genomes, is slightly less AT-rich,
and contains no identifiable introns (Table 1). It is gene-rich, with
a similar coding density as other amoebozoan mtDNAs, but
exhibits an unusually low ratio of identifiable protein-coding genes
to ORFs. Only 19 protein-coding genes could be identified as

Phalansterium sp.

mitochondrial genome
53,614 bp

M Ribosomal RNAs
M Ribosomal proteins
L Transfer RNAs

B Freestanding ORFs

{

o
b

§

o
3
=
=

Cytochromes & cxidases
NADH dehydrogenases
ATP synthases

Figure 2. Map of the Phalansterium sp. mitochondrial genome. Genes (filled boxes) are transcribed clockwise. tRNA genes are indicated by the one-
letter amino acid code followed by the anticodon in parentheses. All genes were found located on the same strand. ORFs smaller than 100
amino acids are not shown. GC content calculated with OGDRAW is shown underneath the genes in the inner gray circle. The GC-poor

region between nad1 and rns is indicated by a black bar.
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Figure 3. Phylogenetic position of the Phalansterium sp. cytochrome oxidase b mitochondrial protein (Cob). The figure shows a zoom-in of the best
ML tree computed with PhyML under the LG+T'4+F model of amino acid substitution (the full tree is available in Nexus format in Data S1).

The dashed line indicates the junction with the rest of the tree (not shown). Bootstrap support over 50% is shown above the major nodes,
(with asterisks for 100%).
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Table 1. General characteristics of select amoebozoans mtDNAs

Jean-Francois Pombert et al.

. . . Density® Intronic .
0y a
Species size GC (%) | protein rRNA tRNA ORFs (genes/kbp) Introns ORFs Accession
Acanthamoeba 41,501 | 29.4 36 3 16 3 1.47 3 3 NC_001637
castellanii
Dictyostelium citrinum| 57,820 27.0 35 3 19 11 1.30 5 7 NC_007787
Dictyostelium 55,564 | 27.4 35 3 18 3 113 5 4 NC_000895
discoideum
Dictyostelium 54563 | 255 35 3 17 11 1.25 5 2 NC_010653
fasciculatum
Vermamoeba 51,645 | 32.0 37 3 25 9 1.42 0 0 NC_013986
vermiformis
Physarum 62,862 | 25.9 36 3 5 22 1.05 0 0 NC_002508
polycephalum
Polysphondylium | 47 g55 | 545 35 3 19 7 1.34 3 0 NC_006862
pallidum
Phalansterium sp. 53,614 34.6 19° 2d 24 27 1.34 0 0 KC121006

aThe values represent the number of separate coding regions, rather than number of proteins per se. Thus, the fused cox1/2 ORF is counted
only once whereas the split rps3 in Dictyostelium species and Polysphondylium is counted twice.
bThe coding density (number of genes per kbp) was calculated from the sum of the genes encoding proteins and RNAs as well as unidentified

and intronic ORFs.

°The two pseudo-genes in the Phalansterium sp. mitochondrial genome (¥-cob and W-atp6) were not included in this value.
9The divergent 5S rRNA encoded in amoebozoan mitochondrial genomes [50] could not be reliably identified in Phalansterium and is therefore

not included in this number.

homologous to other known sequences, in contrast to the 35-37
protein genes of known function found in all other amoebozoan
mitochondrial genomes sequenced to date. In contrast, the
Phalansterium mitochondrial genome contains an abundance
of unidentified ORFs—27 longer than 300 bp were identified—
whereas typically fewer than 12 are found in other amoebozoans
(P polycephalum is an exception with 22 unidentified ORFs). The
identifiable genes are also very divergent at the sequence level,
which is not surprising for amoebozoans. For examples, amino
acid sequence identity between cox? homologues (excluding
the fused cox2 segment in Acanthamoeba, Polysphondylium
and the Dicyostelium species) ranges between 61% and 87%
whereas cob homologs share from 51% to 94% identity between
species. This variation suggests that some of the unassigned
ORFs likely correspond to genes found in other amoebozoan
mitochondrial genomes. This inference is consistent with the fact
that the ‘missing’ genes mostly encode small ribosomal proteins,
which can be difficult to identify in a divergent genome. On the
other hand, in Physarum mitochondria, most of the additional
unassigned ORFs appear to be transcriptionally inactive, at
least under the growth conditions used by investigators to date,
suggesting they may not be functional [39].

In Physarum mitochondria, transcripts undergo extensive
nucleotide insertion editing as well as limited C-to-U substitution
editing during maturation [40]. This post-transcriptional editing,
superimposed on a relatively high rate of sequence divergence
at the genome level, complicates the identification of genes via
standard homology searches [41,42]. Extensive RNA editing, if
it occurs in Phalansterium mitochondria, could be an additional
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reason for the apparent paucity of identifiable protein-coding
genes in this genome.

In Acanthamoeba castellanii and other amoebozoans, the
Cox1 protein lacks the C-terminal portion of a conventional,
mtDNA-encoded Cox1. This C-terminal sequence is instead
encoded by a nuclear gene, whose protein product is imported
into mitochondria [43]. The Phalansterium Cox1 also lacks the
C-terminal region in question, indicating that the last common
amoebozoan ancestor already had this cox7 gene fission. On
the other hand, as in Vermamoeba and Physarum, the cox1 and
cox2 genes are separate in Phalansterium mtDNA, whereas they
are fused into a single continuous ORF in the mitochondrial
genomes of Acanthamoeba [44], Dictyostelium species, and
Polysphondylium.

In contrast to its relatively low content of protein-coding
genes, Phalansterium mtDNA exhibits the second largest
repertoire of tRNA genes (24) of completely sequenced
amoebozoan mitochondrial genomes. This set includes 3 species
with CAU anticodon (putative tRNAMet isoacceptors), 2 of which
are virtually identical duplicates. Phalansterium uniquely shares
with Vermamoeba five mitochondrial tRNA genes, encoding
three tRNA*9 and two tRNAS* isoacceptors, that are absent from
other amoebozoan mitochondrial genomes. We infer that these
tRNA genes were present in the last amoebozoan common
ancestor and subsequently lost in later diverging amoebozoans.

In A. castellanii [45], P. polycephalum [46] and D. discoideum
[47], mitochondrial tRNAs undergo a form of 5’ editing to correct
mis-matches in the first three positions of the acceptor stem.
By revealing such acceptor stem mis-matches, secondary



The complete mitochondrial genome from an
unidentified Phalansterium species.

structure modeling of tRNA gene sequences has proven to be a
powerful predictor of mitochondrial tRNA 5’ editing [48]. Of the
24 tRNAs encoded by Phalansterium mtDNA, we infer on this
basis that at least 16 require post-transcriptional 5' editing to
generate the functional species. The almost certain existence of
tRNA 5’ editing in Phalansterium mitochondria argues that this
system was already established in a last common amoebozoan
ancestor.

Overall, the Phalansterium mitochondrial genome
might be summed up as having an ‘ancestral’ architecture
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