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I. Introduction

Microsporidia are a diverse group of eukaryotic
parasites with over 1200 described species. Most
species infect animals, though some species infect
other single-celled eukaryotes, for example the
gregarine Selenidium and the amoeba Vanella
(Leger and Dubosq 1909; Scheid 2007). However,
microsporidia are increasingly important humans
pathogens with 14 species now recognized as
causing illness in the immunocompromised; and
given the diversity of microsporidia there are
likely many other species extant with the potential
to infect humans given the right opportunity
(Mathis et al. 2005). The spores of microsporidia
are highly environmentally resistant and in
humans are generally transmitted via the fecal–
oral route, frequently causing intestinal infec-
tions. Other sites of infections are also possible

and once in the body the parasites often migrate
and can infect virtually any tissue of the body.
These disseminated infections are rare, but gener-
ally far more serious and may result in death
(Coyle et al. 2004).

The microsporidia have an interesting but not
fully understood mechanism of cell invasion. The
infective stage of microsporidia is the dormant
spore, a characteristic structure dominated by a
tightly coiled filament called the polar filament
(Fig. 2.1; Kudo 1918). The germination of spores
is triggered by a variety of environmental cues,
which leads to expulsion of the polar filament, and
its eversion to become a tube. The polar vacuole
expands, forcing the contents of the spore through
the tube into the host cell where it forms a rather
amorphous cell, at this stage called a meront
(Vávra and Larsson 1999). Expulsion of the polar
tube is thought to be precipitated by an increase in
pressure within the spore. This increase in pres-
sure is likely produced by a rapid influx of water
into the cell. Aquaporin proteins encoded in the
Encephalitozoon cuniculi genome are suggested to
provide the means of entrance of water in the cell
across the plasma membrane (Frixione et al. 1997;
Ghosh et al. 2006), the permeability of which may
be controlled by changes in ion concentrations in
the environment. It is also hypothesized that
osmotic pressure may be increased inside the
spore at the time of germination by the break-
down of the disaccharide sugar trehalose into
less complex sugars, driving an influx of water.
In line with this, it has been shown in some
aquatic species of microsporidia that there is a
rapid disappearance of trehalose and the appear-
ance of smaller sugars at germination (Undeen
and Vander Meer 1999).

Conventional theories suggest that triggers
for germination are chemical and that the polar
tube physically pierces through the host cell,
and the spore contents pass directly into the host
cell cytoplasm, where it can directly interact with
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the host cell environment. However, recent data
also suggest that infection may be mediated by a
molecular anchoring of the spore to the host cell
surface glycosaminoglycans prior to germination
(Southern et al. 2006). This discovery of amolecular
interaction between microsporidia and host before
infectionmay provide a basis for understanding the
host specificity of different microsporidia species.
It has also been observed that the end of the everted
polar tube, and subsequently the spore contents,
can be endocytosed by the host after germination
rather than being passed through the membrane
via the polar tube (Schottelius et al. 2000). Once
inside the cell, microsporidia life cycles are vari-
able from species to species but generally there is a
phase of meront cell division, followed by sporog-
ony, in which the infection apparatus and spore
wall develop, followed by maturation and release
of the spores through the rupture of the host cell
(Schottelius et al. 2000).

II. History of the Classification
of Microsporidia

Microsporidia have been studied for over
150 years, but like many single-celled eukaryotic
lineages, they have a long history of phylogenetic
misplacement (see Chapter 1 in this volume).
Suprisingly, when Nägeli first examined them
in the 1800s (Nägeli 1857), he grouped micro-
sporidia with the Schizomycete fungi, though at
this time there was little information on the
untrastructural differences between single-celled

organisms. The Schizomycete fungi since turned
out to be a collection of many unrelated species of
eukaryotes and prokaryotes, and microsporidia
were soon were re-assigned to their own group
within the Sporozoa class of Protozoa (Balbiani
1882) and later grouped with the Myxozoa in the
Cnidosporidia (Döflein 1901). This was based on
the fact that both taxa share the characters of a
polar filament and an ability to form spores, which
were thought to be homologous traits. This group-
ing persisted for over 70 years until a greater
understanding of the ultrastructure and biochem-
istry of the Cnidosporidia revealed fundamental
differences in the two characters between various
subgroups (Lom 1962), eventually leading to the
microsporidia being moved into their own phy-
lum (Sprague 1969, 1977).

In 1983, Cavalier-Smith placed microspora
in the subkingdom Archezoa based on the per-
ceived absence of mitochondria in the group.
He hypothesized that microsporidia and other
Archezoa (diplomonads, Parabasalia, Archamoe-
bae) were primitively amitochondriate, having
branched away from the main eukaryotic line-
age before the mitochondrial endosymbiosis
(Cavalier-Smith 1983). With the advent of molec-
ular phylogeny, the source of characters for recon-
structing protozoon phylogeny switched from
ultrastructure and biochemistry to gene and
amino acid sequences. The sequencing and phylo-
genetic analysis of the small subunit ribosomal
RNA of the microsporidian Vairimorpha necatrix
appeared to provide a stunning confirmation of

Fig. 2.1. Microsporidian gener-
alized life cycle. The infection
process starts with the expulsion
of the polar tube forced out
by expansion of the posterior
vacuole. The tube pierces the
host cell and the microsporidian
passes its contents into the
host cell cytoplasm to form a
meront. These develop (some-
times within a vacuole – as
shown here) into more spores
that are released into the
environment for further
infection
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the hypothesis that microsporidia were very early-
branching eukaryotes, because the phylogenies
not only placed microsporidia at the base of
eukaryotic tree (Vossbrinck et al. 1987), but also
revealed the presence of fused 5.8S-LSU rRNA, a
character shared with prokaryotes (Vossbrinck
and Woese 1986). Subsequent phylogenies of
EF1-a and EF-2 reinforced this, also showing
microsporidia to branch early (Kamaishi et al.
1996). Indeed, microsporidia often branched
even earlier than the other Archezoa, which
together with other characters led to the idea
that they may be the first branch of extant eukar-
yotes (Patterson 1994).

In 1996, the phylogenetic analysis of a- and
b-tubulin sequences from Antonospora (Nosema)
locustae, Spraguea lophii, Encephalitozoon cuni-
culi, and Encephalitozoon hellem suggested an
alternative position for microsporidia as relatives
of the Fungi (Edlind et al. 1996; Keeling and
Doolittle 1996). This prompted re-analysis of the
previously analysed data sets using methods cor-
recting for potential artefacts and the sequencing
of new phylogenetic markers in microsporidia
(Fast et al. 1999; Hirt et al. 1999; Van de Peer
et al. 2000). One particular source of artefact per-
vasive to molecular phylogenies of microsporidia
is long-branch attraction.

If two taxa in a phylogeny have significantly longer
branches than the other taxa, they have an increasing
probability of being grouped together irrespective of
their phylogenetic relationships as more characters are
added to the data set (Felsenstein 1978). Another issue
that has confounded microsporidian phylogenies is the
problem of unequal site-rate variation. Not all sites vary
freely or at the same rate across sequence alignments and
some sites may not vary in any of the taxa. These sites can
be hypothesised to be invariable, particularly in an align-
ment, which includes sequences representing highly
diverse taxa, including eubacteria and diverse eukaryote
lineages. If invariable sites are included in an analysis and
among-site rate variation is not taken into account, the
number of changes that have occurred at the fast evolving
sites may be underestimated.

This can cause fast evolving sequences to
branch together (Yang 1996).

After these sources of artefacts were corrected
for, microsporidia were consistently found to
branch within or at the base of the Fungi in most
molecular markers previously used to support
their basal position, except in the phylogeny of
SSU rRNA where they remained basal to eukar-

yotes (Fast et al. 1999; Hirt et al. 1999; Van de Peer
et al. 2000). The importance of long-branch attrac-
tion in analysis of microsporidian genes was
recently highlighted by an analysis of 99 genes
from the E. cuniculi genome. This showed a clear
inverse correlation between the rate of substitu-
tion in a gene and its propensity to unite micro-
sporidia and fungi in its phylogeny (Thomarat
et al. 2004), which reinforces the conclusion that
early phylogenies were hampered by long-branch
attraction problems.

III. Microsporidia in or out of the Fungi?

Given that microsporidia are phylogenetically
allied to the Fungi, the question is still open as to
whether microsporidia evolved from a lineage
within the Fungi or are a distinct lineage of eukar-
yotes branching at the base of the Fungi, therefore
representing a sister group (see Chapter 1 in this
volume). Apart from phylogenies, which may of
course be vulnerable to artefactual relationships
caused by poor taxon sampling, long-branch
attraction, or lack of fit of the characters to the
model of evolutionary change used to infer the
phylogeny, are there any reliable synapomorphic
characters that link microsporidia to the Fungi?

There are three characters that solidly place
microsporidia within the opisthokonts (animals,
fungi, and their closest protist relatives). One is
a 10-amino-acid insertion within the EF1A pro-
tein that is unique to opisthokonts and is also
present within microsporidia (Baldauf et al.
1996; Kamaishi et al. 1996). The second is the
presence of two separate genes for dihydrofolate
reductase and thymidylate synthase (Duffieux
et al. 1998), which are fused in non-opithokont
lineages (Stechmann and Cavalier-Smith 2002).
Lastly, microsporidia and other opisthokonts
also share a related holoarchaeal-type tyrosyl-
tRNA synthetase, presumably laterally transferred
into the ancestral lineages that gave rise to ani-
mals and fungi (Huang et al. 2005). These place
microsporidia within the opithokonts but not spe-
cifically within the Fungi.

More specifically, one character that has been
used to place microsporidia specifically outside or
at the base of the Fungi is a two amino acid
deletion, again in EF1A (Tanabe et al. 2002, 2005).
This deletion exits in all fungi where EF1A has
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been sequenced, but generally not in animals, nor
does it occur in any microsporidia studied so far.
This would suggest that microsporidia be placed
toward the base of the Fungi, if not outside the
group. However this character will probably
never be definitive because some entomophagous
fungi and many chytrid and fungi, including the
important genus Rozella (see below), have lost the
conventional EF1A gene in favour of a distantly
related member of the same GTPase family,
named EF-like or EFL (James et al. 2006a; Keeling
and Inagaki 2004).Without EF1A in these lineages,
we cannot determine whether this deletion was
present in the most basal fungal lineages, and
therefore whether any of these lineages branched
before or concurrently with microsporidia.

None of these molecular characters place
microsporidia specifically within the Fungi, how-
ever there are some characteristics of microspor-
idia that are typically fungal, for example the
presence of closed intranuclear mitosis and the
presence of chitin in the cell wall. Furthermore
several relatively conserved homeotic and TALE
genes have been identified in the E. cuniculi
genome (Burglin 2003). These are characteristically
found in plants, animals and fungi, controlling
polarity, morphology and mating types. Two of
these genes are adjacent in the E. cuniculi genome,
reminiscent of a mating-type loci found in other
fungi (Fraser and Heitman 2004). This does open
an intriguing question about why a mating-type
locus would occur in E. cuniculi, as sex has never
been documented in this species, though molecu-
lar markers for meiosis are present (Gill and Fast
2007).

In at least some zygomycete fungi, the mating
type locus occurs as a syntenic cluster consisting
of a high mobility group transcription factor
flanked by a triose phosphate transporter and an
RNA helicase. This gene cluster also occurs in
both E. cuniculi and E. bieneusi and is partially
conserved in A. locustae (Lee et al. 2008). In gen-
eral the conservation of synteny between these
microsporidia and zygomycetes is much higher
than it is between microsporidia and other fungi
(Lee et al. 2008). This provides a convincing char-
acter to place microsporidia within the Fungi
and specifically suggests a relationship between
microsporidia and zygomycetes.

This is interesting as re-analysis of a- and
b-tubulin protein sequences with representation
from several chytridiomycete, ascomycete, basio-

diomycete and zygomycete lineages also suggested
some affinity to zygomycetes, and specifically a
clade of entomophagous zygomycetes (Keeling
2003; Keeling et al. 2000). The analysis of tubulins
is problematic, however, since evolutionary rates
correlate to the presence of flagella. Both the
microsporidia and most fungi lack flagella, and
share long-branch tubulins, which could easily
lead to an erroneous placement of microsporidia
within such flagella-lacking fungi just as other
genes erroneously placed microsporidia at the
base of eukaryotes (Keeling 2003; Keeling et al.
2000). A concatenated phylogeny of eight pro-
tein-coding genes using a smaller taxon sample
(but nevertheless including representatives of all
four major fungal lineages) found microsporidia
to branch at the base of the ascomycetes and bas-
diomycetes (Gill and Fast 2006). The authors of
this study also suggest a possibility of long-branch
attraction between the representative organisms
within this clade and microsporidia, and that
there are problems of taxon sampling as just a
single representative for the chytrids was available
for the eight-gene concatenation. More recently,
the Fungal Tree of Life project attempted to resolve
some of the major issues confounding fungal
phylogenetics and classification by producing
a multigene phylogeny with an unprecedented
number of fungal lineages, including the micro-
sporidia (James et al. 2006a). Here the microspor-
idia branch near the base of the fungal tree, and
fascinatingly they form a clade with the parasite
Rozella allomycis (James et al. 2006a). Rozella is
not present in any other analysis including micro-
sporidia, and indeed few genes have been sampled
from both lineages, so this remains an intriguing
avenue to follow.

This relationship between microsporidia and
Rozella was proposed on the basis a phylogeny
of two protein coding genes: RPB1 and RPB2.
It is not well supported statistically, and several
equally likely branching positions for microspor-
idia within the fungal tree of life were also pro-
posed, one of which placed microsporidia basal
to all fungi (James et al. 2006a). There are, how-
ever, a couple of conspicuous similarities between
R. allomycis and microsporidia. Both are obligate
intracellular parasites and therefore both require
a mechanism for entering the host cell. In Rozella
it is reported that the zoospore stage forms an
attachment to the Allomyces host cell, which is
followed by retraction of the flagellum, encystment,

28 Bryony A.P. Williams and Patrick J. Keeling



proceeded by the formation of a germ tube. The
parasite then injects its protoplast into the host
cell, forced out of the cyst by a rapidly expanding
vacuole (Held 1972). Of course, there is no
evidence of a flagellum in microsporidia, or
even any other 9+2 microtubular structures.
However the need for an expanding vacuole is
a somewhat reminiscent of the polar vacuole
in microsporidia which forces out the sporo-
plasm (see above) and provides an interesting
possible homology between these two unique
fungal groups.

As with molecular data, there are few hints
from morphology about the exact relationship
between microsporidia and fungi. The relationship
between microsporidia and entomophagous zygo-
mycetes prompted some speculation that themicro-
sporidian infection mechanism might be related
to the mechanism used for zygospore dispersal
in this group of insect parasites (Keeling 2003;
Keeling et al. 2000), and interestingly a similar
position among the Fungi was previously suggested
based on possible homologies in cell biology and
SSU ribosomal RNA phylogenies (Cavalier-Smith
2001). Cavalier-Smith (2001) hypothesized that
there could be homology between the filamentous
appendages in the infective trichospores of the
harpellalean fungi and the polar tube of the micro-
sporidia. In the spore stage of the harpellalean
fungi, filamentous appendages develop and are
coiled up within the cell. These are expelled as
long filaments during germination (Lichtwar
1967). However their function is thought to be to
allow entanglement of the fungus with the sub-
strate and, although there are some morphological
similarities to the microsporidian polar tubes, the
two do not share functional similarity.

There are two main impediments to any
attempt to clarify the relationship between micro-
sporidia and fungi. First, data representing the full
diversity of fungi and microsporidia are generally
lacking (Bass et al. 2007; Gill and Fast 2006; James
et al. 2006b; Keeling 2003). Even if the presently
available phylogenetic markers were sufficient
and the methods to extract phylogenetic signal
from the data were adequate, we probably have
not yet sampled some major fungal lineages and
so may not yet have sampled from the fungal
lineage most closely related to the microsporidia.
Second, the microsporidia are so derived at all
levels, frommolecular sequences, to biochemistry,

to morphology that it is possible that available
markers and methods will not be sufficient to
address the problem simply because their rapid
adaptation and evolution have erased too much of
their history. If this is the case, then one tack
to take must be to identify the least divergent
lineages of microsporidia. It is possible that
early-diverging lineages of microsporidia were
not subject to the same massive levels of change
(similar to the recent discovery of an algal relative
of apicomplexan parasites that retains many char-
acters believed to be ancestral; Moore et al. 2008),
and if so perhaps these lineages could be linked to
their closest relatives more clearly. Further explo-
ration of the diversity of both fungi and micro-
sporidia is needed in order to know.

IV. Cellular and Genomic Reduction
in the Microsporidia

Microsporidia were once regarded as ‘primitive’,
but when they are re-evaluated as opithokonts,
and perhaps fungi, we now see microsporidia as
‘reduced’ instead. Indeed, reduction and loss are
two prevailing themes in just about every aspect of
their biology. Reduction is seen in the simplifica-
tion of many molecular systems (e.g., the ribo-
somes and ribosomal RNAs are both similar in
size to those of prokaryotes rather than other
eukaryotes), the absence of many components of
some cellular and biochemical pathways, and the
degeneration of organelles, such as the mitochon-
drion. Loss too is seen at all levels from the loss of
genes, loss of introns, loss of complete biochemi-
cal pathways and perhaps even the complete loss
of organelles (e.g., the peroxisome and flagella). It
is interesting to ask whether this drastic reorgani-
zation of the cell and it molecular biology is really
unique to the microsporidia, or are aspects of
such reduction evident in other fungal lineages?
In fact, many fungal lineages do exhibit many of
the same characteristics that reduction and loss
have generated in microsporidia, but the differ-
ence is that we do not see them altogether in one
cell. Below, we will review some of the levels where
microsporidian reduction is best studied and
most severe, and we will compare a few such traits
to corresponding characteristics of fungi.
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A. Genome Reduction

Members of the microsporidia bear the smallest
known eukaryotic nuclear genomes and are now
model organisms for understanding genome
compaction and reduction. The smallest docu-
mented microsporidian genome is 2.3 Mb and
the largest estimated at 23 Mb, with a range of
sizes in between (Belkorchia et al. 2008; Biderre
et al. 1994; Méténier and Vivarès 2001). However,
before the E. cuniculi genome was sequenced,
Saccharomyces cerevisiae provided this model
of genome compaction. Whereas E. cuniculi has
a genome of just 2.9 Mb with an estimated 1997
protein coding genes (Katinka et al. 2001), baker’s
yeast has a 12-Mb genome with around 6000 genes
(Dujon 1996): a proteome three times the size in a
genome six times the size. In other fungi moderate
genome reductions is also well known: the Pneu-
mocystis carinii genome is just 6.5 Mb (Cushion
and Smulian 2001) and the genome of the basio-
diomycete Malassezia is around 9 Mb with 4285
genes (Xu et al. 2007). Although these are larger
than the smallest microsporidian genome, they
are within the range of microsporidian genome
sizes, and with eukaryotic genomes ranging from
2.3 to 670000 Mb, they are also certainly at the
small end of the spectrum in general. Moreover,
smaller fungal genomes are still very likely to
exist, given the number of species that have been
investigated is a small proportion of what exists,
so it is not inconceivable that a fungal genome
smaller than the smallest microsporidian genome
will be described. Overall, genome reduction
appears to be a phenomenon that occurs in several
lineages throughout the Fungi, though perhaps
not the same extent as we see in the microspor-
idia, and perhaps not as consistently.

One of the notable traits of microsporidian
genomes that arises as a consequence of this
reduction is a high level of conservation of gene
order between distantly related species.

This was initially observed between A. locustae and
E. cuniculi and later between A. locustae, E. cuniculi and
Enterocytozoon bieneusi (Corradi et al. 2007; Slamovits
et al. 2004).

This is hypothesized to be a consequence of
the difficulty in rearranging genes when intergenic
spaces between genes are very small; the larger the
gap between gene pairs the more likely they are to

undergo a gene rearrangement event without dis-
rupting a gene (Hurst et al. 2002; Slamovits et al.
2004). This is not unique to the microsporidia but
also studied in yeast, which also have short dis-
tances between genes (Poyatos and Hurst 2007).
However the number of shared syntenic genes
between different species is exaggerated in the
microsporidia where the spaces between genes
are shortened to the extreme.

Microsporidia have also been shown to have a
messy system of transcription, apparently owing
again to the fact that intergenic spaces are small,
in this case so small that promoters and termina-
tion signals can no longer be contained within
them (Corradi et al. 2008; Williams et al. 2005).
Again this system is not exclusive to microspor-
idia and is found in other fungi with instances of
overlapping transcription being found in mRNA
transcripts from S. cerevisiae (Hurowitz and
Brown 2003), but as with genome rearrangements,
the effect is exaggerated in the extremely reduced
genomes of microsporidia.

1. Reduced Microsporidian Biochemistry
and Molecular Biology

Microsporidia have lost many metabolic pathways
and molecular systems compared to their free-
living relatives. The most obvious are the loss of
the electron transport chain and the Krebs cycle.
There are no components of the heme biosynthe-
sis pathway encoded in the E. cuniculi genome.
In the absence of mitochondrial cytochromes
there are fewer heme-containing proteins and it
is possible that heme is scavenged from the host
rather than being synthesized within the micro-
sporidia (Vivarès et al. 2002). There are no fatty
acid or cholesterol synthesis pathway compo-
nents, also suggesting a reliance on the host
(Vivarès et al. 2002).

There are also many pathways that are not
completely lost, but merely downsized, and whit-
tled down to a core set of proteins. One well
described example is the various DNA repair sys-
tems that exist in eukaryotic cells, which are of
course essential systems in cell maintenance.

Reviewing the extent of loss of components the major
DNA repairs systems in E. cuniculi compared to
S. cerevisiae, including non-homologous end joining,
homologous recombination repair, mismatch repair
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(MMR), nucleotide excision repair, base excision repair
and methyltransferase repair, showed all pathways were
reduced to some extent in microsporidia, but some com-
ponents of each individual process were also retained,
suggesting the retention of a minimal DNA repair system
(Gill and Fast 2007).

The network of protein kinases involved in
signaling processes within the cell seems to be
similarly reduced. Here there is a bias towards
signaling pathways involved in cell maintenance,
whereas signaling processes involved in sensing
environmental change are more pared down,
probably reflecting the protective and stable intra-
cellular in which the microsporidia reside
(Miranda-Saavedra et al. 2007).

B. Simplified Microsporidian Cell Structure:
Variations on the Eukaryotic Theme

Microsporidia were long thought to be an example
of the primitive cellular state of the eukaryotic
cell. They were suggested to be primitively lacking
mitochondria, Golgi and peroxisomes. Of course,
in the context of microsporidia being closely
related to fungi it makes no sense for them to be
primitively lacking any of these organelles;
instead they have been lost or transformed, and
here we will discuss their evolution.

The mitochondrion has attracted much atten-
tion, in part due to the Archezoa hypothesis
described earlier. A homologous organelle is now
known to exist in microsporidia, but it is so highly
reduced it was only identified through the immu-
nolocalisation of an endosymbiont-derived mito-
chondrial Hsp70 protein (Williams et al. 2002).
The complete genome of E. cuniculi (Katinka
et al. 2001) revealed that the mitochondrion,
termed mitosome, had lost its genome, lost its
electron transport chain and the Krebs cycle and
was predicted to exist mainly to allow iron–sulfur
cluster assembly for export and integration into
cytosolic iron–sulfur proteins, which is an essen-
tial function of mitochondria in yeast cells. This
conclusion was substantiated by work that has
localized proteins involved in iron–sulfur cluster
in both E. cuniculi and Trachipleistophora homi-
nis (Goldberg et al. 2008; Williams et al. 2008b). It
has also been shown that some E. cuniculi pro-
teins involved in iron–sulfur cluster assembly
can complement yeast homologs. Interestingly,
however, some of these predicted mitochondrial

proteins do not seem to be localized to the mito-
somes in all species of microsporidia. Goldberg
et al. (2008) show that, in E. cuniculi, both the
iron–sulfur cluster proteins ISCU1p and cysteine
desulfurase localize to a mitosome whereas, in
T. hominis, they appear to be cytoplasmic. Simi-
larly, in E. cuniculi, ferredoxin, a typically mito-
chondrial protein in yeast cells, has a punctate
distribution, consistent with a mitosomal location
whereas the mitochondrial glycerol-3-phoshate
dehydrogenase appears to have a cytoplasmic dis-
tribution (Williams et al. 2008b), but there is evi-
dence that this protein is more likely mitosomal in
A. locustae (Burri et al. 2006). This may indicate
that mitosomes in different species of microspor-
idia may differ and be in different states of degen-
eration. This is also is reflected in a different
complement of mitochondrial gene homologs
in different microsporidia (Burri et al. 2006;
Williams et al. 2008a).

Various levels of mitochondrial reduction also
occur in other fungal mitochondria. For example,
mitochondrial genomes have been completely lost
in the anaerobic chytrid fungi in the family Neo-
callimastigaceae. Here the mitochondria have
been transformed into hydrogenosomes: mito-
chondrion-derived organelles that produce ATP
via decarboxylation of pyruvate and generate
hydrogen gas and, as in microsporidia, rely exclu-
sively on proteins encoded in the nuclear genome
(Yarlett et al. 1986; van der Giezen et al. 2002).
Diverse yeast lineages, the so-called petite-positive
yeast species, can also exist with a genome-less
mitochondrion, and the ability to survive without
mitochondrial DNA is a widespread trait across
the yeasts (Fekete et al. 2007) and in some basio-
diomycetes (Kuscera et al. 2000).

One specific factor that may have allowed the
degeneration of the mitochondria in the micro-
sporidia is the capacity of the parasite cell to
import ATP from the host cell. This ability has
known of for quite some time, and was identified
through the measuring relative levels of ATP con-
sumption in blue crabs, infected or uninfected
with microsporidia (Weidner and Trager 1973).
The genetic basis for this trait was identified in
the E. cuniculi genome as a family of ATP/ADP
translocases that otherwise exist in only in the
eubacterial energy parasites of the Rickettsia and
Chlamydia lineages, and in plastids where they
import ATP into storage plastids to drive biosyn-
thetic processes (Katinka et al. 2001; Neuhaus and
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Emes 2000; Tsaousis et al. 2008). Homologous
genes have now been found in the genomes of
E. cuniculi, E. bieneusi, S. lophii (Corradi et al.
2007; Hinkle et al. 1997; Katinka et al. 2001) and
A. locustae (http://gmod.mbl.edu/perl/site/anto-
nospora01). This gene is thought to have moved
between lineages by lateral gene transfer (Tyra
et al. 2007), and it appears possible that the micro-
sporidia proteins may also have been acquired by
lateral gene transfer, perhaps from either a rick-
ettsial or chlamydial parasite (Fig. 2.2; Richards
et al. 2003).

Another organelle of note that is absent from
microsporidia is a classical stacked Golgi dictyos-
tome. This is not to say there is no requirement for
protein sorting in microsporidia; indeed, proteins
inserted into the spore wall and into the polar tube
appear to be trafficked much like secreted pro-
teins in other eukaryotes. The microsporidian
Golgi exists as a mass of vesicular tubules, which
is present throughout the life cycle, but is particu-
larly apparent during sporogony when the spore
wall and polar tube are being formed.

Microsporidia genomes have a reduced complement
of Rabs, SNAREs and vesicle coat proteins (Dacks and
Field 2007; Katinka et al. 2001). Unlike a typical Golgi,
the microsporidian Golgi is also suggested not to have
COPI and COPII vesicles, and therefore require a direct
connection somewhere between the ER and the Golgi
(Beznoussenko et al. 2007). So again we see a typical
eukaryotic system present in microsporidia, but very
much pared down.

The peroxisome is an organelle that has not
been seen in the microsporidian cell, though this
may not be so surprising since peroxisomes are

small organelles and might be easily overlooked in
cells as small as those of microsporidia. However,
a gene for one of one of the hallmark enzymes of
the organelle, catalase, is definitely absent from
the complete E. cuniculi genome. An alternative
catalase is present in the genome of the insect
parasite A. locustae (Fast et al. 2003), however
this is a kind of catalase that is not normally
localized to a peroxisome in other organisms,
but rather can be secreted into the spore wall in
certain fungi, possibly to protect the spore from
an oxidative burst from the host (Paris et al. 2003).
Furthermore it appears to be derived by lateral
gene transfer from an, obviously, organelle lack-
ing proteobacterium (Fast et al. 2003).

Catalase-like activity has been observed
within the polar vacuole in the fish-infecting
microsporidian S. lophii. In the presence of cata-
lase, diaminobenzidine (DAB) reacts with H2O2 to
form a dark precipitate that can be visualized with
by electron microscopy. Such a reaction was
observed around the polar vacuole in S. lophii,
and based on this it was suggested that the polar
vacuole is a highly derived peroxisome (Findley
et al. 2005), though there is not yet any evidence
for a gene encoding a peroxisomal catalase in
microsporidia (Katinka et al. 2001). An alternative
possibility is that this vacuole is related to the
vacuoles of S. cerevisiae and other fungi, which
are considered analogs of mammalian lysosomes
(Weisman 2003). Similarly, in the infection strat-
egy of the rice blast fungus Magnaporthe grisea,
the vacuole plays a key role and acts as the site of
breakdown of lipid reserves to create the high
turgor pressure needed for the fungus to penetrate
leaf surfaces (Weber et al. 2001).
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icrosporidia
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Hypothesised transfer
of genes allowing ATP

uptake from host

Fungi

Eukaryotes

Fig. 2.2. Lateral transfer of the
energy parasite ATP/ADP
translocase. The ability to
exploit host ATP may have been
acquired by microsporidia
through the lateral gene transfer
of the gene encoding an ATP/
ADP translocase from the line-
age of proteobacteria containing
Rickettia parasites (adapted
from Richards et al. 2003)
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V. Diversity of Microsporidia

Most of what we know of the molecular biology of
microsporidia has been inferred from two species
where extensive genomic data have been available
for several years, A. locustae and E. cuniculi.
While it is always tempting to generalize from
model species, it is likely that these two species
represent only a small fraction of the variability
within microsporidia. Indeed, a genome sequence
survey of two other species, Brachiola algerae and
Edhazardia aedis, shows that the gene comple-
ment of these is likely similar to the better-studied
E. cuniculi and A. locustae, but the overall archi-
tecture of these gene-sparse genome is completely
different (Williams et al. 2008c). Now, two further
draft genomes for N. ceranae and E. bieneusi are
available (Akiyoshi et al. 2009; Cornman et al.
2009). In the case of E. bieneusi, it has demon-
strated even further metabolic reduction than
E. cuniculi with some key pathways, such as gly-
colysis and trehalose metabolism seemingly
degenerated. Additional new genome projects for
microsporidia with larger genomes are underway
(e.g., Belkorchia et al. 2008; Xu et al. 2006) and as
these data emerge they will undoubtedly reveal
still more diversity within microsporidia. Given
the large number of described species, we are
likely to see a degree of variation in a wide range
of different cellular characteristics, and perhaps
we may even pinpoint characteristics that link the
microsporidia to other fungi.

VI. Conclusion

The exact phylogenetic position of the microspor-
idia remains an open question: it is clear they are
not a basal eukaryotic lineage and are somehow
related to fungi. Current data is converging on the
idea that that they are a true fungal group and
potentially allied to a zygomycete lineage. How-
ever the discovery of their true sister group
requires further analysis and more data.

The E. cuniculi genome not only provided a
wealth of direct evidence for many conclusions
on various aspects of microsporidian cell and
molecular biology, but it also acted as a catalyst
for other research questions, which are still trans-
forming our view of many characteristics of
this parasite. At the same time, however, greater

sampling from across the taxonomic breadth of
the group is and will continue to challenge gener-
alizations which are based on E. cuniculi or any
other single species; so one of the major lessons
from recent microsporidian research is to expect
the unexpected. Much of what we know about the
biology of these parasites relates to their bending
or breaking the ‘rules’ of biology, so perhaps it is
not surprising that the rules of microsporidian
biology are not easily predictable.
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