Deep Questions in the Tree of Life

Patrick J. Keeling

A genome sequence might provide answers to major questions about the biology and evolutionary history of an organism. Alternatively, it might reveal more problems than solutions, and its true value then lies in identifying what questions to ask. Perhaps the most interesting genomes do both: They are a panacea and a Pandora’s box. On page 2192 in this issue, Morrison et al. (1) describe such a genome from the diplomonad parasite Giardia lamblia, a human intestinal parasite. The compact Giardia genome is replete with information ranging from the simplicity of its molecular systems to how the parasite interacts with its environment. However, the evolutionary history of Giardia is not so clearly written in the genome, reigniting a smoldering debate about the origin of Giardia and its relationship to other eukaryotes.

The evolution of Giardia has commanded a level of attention matched by few other organisms because it differs from the “textbook” eukaryote in many ways. Most notably, there are no mitochondria in Giardia or its relatives, in keeping with its tolerance for low levels of oxygen (2). The absence of this organelle took on new significance with the discovery that organelle took on new significance with the evolution of oxygen. Apparently, in keeping with its tolerance for low levels of oxygen (2), the protist Giardia lamblia has commanded a level of attention matched by few other eukaryotes because it differs from the “textbook” eukaryote in many ways. Most notably, there are no mitochondria in Giardia or its relatives, in keeping with its tolerance for low levels of oxygen (2) and its relationship to other eukaryotes.

The other implication of the Archezoa hypothesis—that the root of eukaryotes has been convincingly undermined (5) and control of quantum systems. No other functions can be predicted and protein-import complexes are reduced or highly divergent (1, 8).

The other implication of the Archezoa hypothesis—that Giardia is an early branching eukaryote—has attracted even more controversy. The “deep” position of some Archezoa has been convincingly undermined (e.g., Entamoeba mitosomes). In Giardia, proteins involved in iron-sulfur cluster assembly and protein folding appear closely related to mitochondrial homologs and localize to a relict mitosome (3, 7). Interestingly, the Giardia genome contains little else of identifiable mitochondrial ancestry: No other functions can be predicted and protein-import complexes are reduced or highly divergent (1, 8).

Eukaryotic evolution. The hypothetical evolutionary tree consists of five “supergroups” based on several kinds of evidence (15). The branching order of supergroups is unresolved, implying that the relationships are unknown rather than a simultaneous radiation. CM indicates the presence of cryptic mitochondria (hydrogenosomes or mitosomes). A question mark indicates that no organelle has yet been found.

The author is in the Botany Department, Canadian Institute for Advanced Research, University of British Columbia, Vancouver, BC, V6T 1Z4 Canada. E-mail: pkeeling@interchange.ubc.ca

References and Notes
2. In quantum mechanics, physical quantities such as position and momentum are obtained by applying “operators” to a system’s wave function.

Now that the genome of a unicellular parasite has been deduced, can it resolve the debate on the origin of eukaryotes?

PERSPECTIVES

Deep Questions in the Tree of Life

Patrick J. Keeling

A genome sequence might provide answers to major questions about the biology and evolutionary history of an organism. Alternatively, it might reveal more problems than solutions, and its true value then lies in identifying what questions to ask. Perhaps the most interesting genomes do both: They are a panacea and a Pandora’s box. On page 2192 in this issue, Morrison et al. (1) describe such a genome from the diplomonad parasite Giardia lamblia, a human intestinal parasite. The compact Giardia genome is replete with information ranging from the simplicity of its molecular systems to how the parasite interacts with its environment. However, the evolutionary history of Giardia is not so clearly written in the genome, reigniting a smoldering debate about the origin of Giardia and its relationship to other eukaryotes.

The evolution of Giardia has commanded a level of attention matched by few other organisms because it differs from the “textbook” eukaryote in many ways. Most notably, there are no mitochondria in Giardia or its relatives, in keeping with its tolerance for low levels of oxygen (2). The absence of this organelle took on new significance with the discovery that organelle took on new significance with the evolution of oxygen. Apparently, in keeping with its tolerance for low levels of oxygen (2), the protist Giardia lamblia has commanded a level of attention matched by few other eukaryotes because it differs from the “textbook” eukaryote in many ways. Most notably, there are no mitochondria in Giardia or its relatives, in keeping with its tolerance for low levels of oxygen (2) and its relationship to other eukaryotes.

The other implication of the Archezoa hypothesis—that the root of eukaryotes has been convincingly undermined (5) and control of quantum systems. No other functions can be predicted and protein-import complexes are reduced or highly divergent (1, 8).

The other implication of the Archezoa hypothesis—that Giardia is an early branching eukaryote—has attracted even more controversy. The “deep” position of some Archezoa has been convincingly undermined (e.g., Entamoeba mitosomes). In Giardia, proteins involved in iron-sulfur cluster assembly and protein folding appear closely related to mitochondrial homologs and localize to a relict mitosome (3, 7). Interestingly, the Giardia genome contains little else of identifiable mitochondrial ancestry: No other functions can be predicted and protein-import complexes are reduced or highly divergent (1, 8).

Eukaryotic evolution. The hypothetical evolutionary tree consists of five “supergroups” based on several kinds of evidence (15). The branching order of supergroups is unresolved, implying that the relationships are unknown rather than a simultaneous radiation. CM indicates the presence of cryptic mitochondria (hydrogenosomes or mitosomes). A question mark indicates that no organelle has yet been found.

The author is in the Botany Department, Canadian Institute for Advanced Research, University of British Columbia, Vancouver, BC, V6T 1Z4 Canada. E-mail: pkeeling@interchange.ubc.ca

References and Notes
2. In quantum mechanics, physical quantities such as position and momentum are obtained by applying “operators” to a system’s wave function.

Now that the genome of a unicellular parasite has been deduced, can it resolve the debate on the origin of eukaryotes?
by showing that they belong elsewhere in the phylogenetic tree, the clearest case being the relationship between microsporidia and fungi (5). For Giardia, such a specific alternative is not so clear-cut, but the genome may provide clues. Diplomonads may belong to a group of protists known as excavates, specifically related to Parabasalia such as Trichomonas (9, 10). Like Trichomonas, the Giardia genome does not encode myosin (which is rarely absent from eukaryotic genomes) and encodes a bacterial arginine metabolism pathway, supporting a close relationship. This does not preclude an early divergence for both Giardia and parabasalids, for this depends on where the root of the eukaryotic tree lies, which is difficult to resolve. Indeed, there are doubts about how phylogenetic reconstruction methods can determine this root, given the unequal rates of sequence evolution and great genetic distance between eukaryotes and prokaryotes (11). There are also difficulties inherent in reconstructing the history of divergent genes with current phylogenetic methods, and large amounts of data that violate evolutionary models can generate well-supported errors (12). Morrison et al. show high levels of divergence in much of the Giardia genome, so although the genome may contain data to reconstruct Giardia’s history, it will be a challenge to use it.

The outcome of this debate affects not only our understanding of early eukaryotic evolution, but also our view of Giardia biology. Simple characteristics could be primitive or derived via reduction, alternatives with very different meanings. The simplicity of Giardia’s molecular systems differs from that of known derived parasites (1, 13). However, different lineages can follow different reductive paths (14), so determining Giardia’s origins independently of its simplicity is essential. Given the depth of these questions, the new life that Morrison et al. have breathed into the debates is welcome, and will ensure continued attention on both a fascinating cell and the origin of eukaryotes.

References

10.1126/science.1149593

Does Our Universe Allow for Robust Quantum Computation?

Dave Bacon

Computers operating purely according to the laws of quantum theory might break modern cryptographic codes (1), revolutionize quantum chemical calculations (2), and overturn the most basic limits to computing (3). Standing in the way of creating these dream machines is the fact that quantum computers do not like to maintain their quantum nature, but instead have a propensity to decay into machines obeying the classical laws of physics. This obstacle is known as quantum decoherence, and on page 1893 of this issue, Emerson et al. (4) report a way to analyze various quantum processes to find the ones that can stand up to this decay.

The solution to the problem of quantum decoherence, at least in theory, has been known for more than a decade and is encoded in a famous theorem for fault-tolerant quantum computation (5–8). This “threshold” theorem says that multiple quantum systems can be used to simulate a single error-free quantum system. Left out, however, is the question of whether the theorem actually holds in an experimental setting: Does our universe allow for robust quantum computation?

This is a hard question because the cost (the number of experiments needed) of characterizing the properties of quantum systems useful for fault-tolerant computation rises exponentially with the number of quantum systems (9, 10). Emerson et al. have found a way to probe quantum processes that has a cost that, contrariwise, scales polynomially in the number of quantum systems (that is, a much lower cost per quantum system). Although this method throws away a certain amount of information, it also retains much of the relevant information. Thus, the authors have opened the door on a new era where quantum devices can be rapidly characterized as useful or not useful for the task of building...

Quantum casino. Emerson et al. propose a new scheme in which the evolution of a quantum system is symmetrized to eliminate unwanted information. The operations for a single qubit are shown as transformations of a gambling die. All 192 such operations on a die are displayed, 24 rotations and eight reflections of a die through a plane (which are impossible in our world and why you won’t find those dice on a casino table). The procedure of Emerson et al. can be thought of as randomly selecting one die for each quantum bit in the system from the 192 choices and then applying the transform corresponding to that die to a corresponding quantum bit.