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Marine and freshwater ecosystems are fundamentally different regarding many biotic and abiotic factors.
The physiological adaptations required for an organism to pass the salinity barrier are considerable. Many
eukaryotic lineages are restricted to either freshwater or marine environments. Molecular phylogenetic
analyses generally demonstrate that freshwater species and marine species segregate into different
sub-clades, indicating that transitions between these two environments occur only rarely in the course
of evolution. It is, however, unclear if the transitions between freshwater and environments characterized
by highly variable salinities, such as the marine supralittoral zone, are also infrequent. Here, we use tes-
tate amoebae within the Euglyphida to assess the phylogenetic interrelationships between marine supr-
alittoral and freshwater taxa. Euglyphid testate amoebae are mainly present in freshwater habitats but
also occur in marine supralittoral environments. Accordingly, we generated and analyzed partial SSU
rRNA gene sequences from 49 new marine/supralittoral and freshwater Cyphoderiidae sequences, 20
sequences of the Paulinellidae, Trinematidae, Assulinidae, and Euglyphidae families as well as 21 Gen-
Bank sequences of unidentified taxa derived from environmental PCR surveys. Both the molecular and
morphological data suggest that the diversity of Cyphoderiidae is strongly underestimated. The results
of our phylogenetic analyses demonstrated that marine supralittoral and freshwater euglyphid testate
amoeba species are segregated into distinct sub-clades, suggesting that transitions between these two
habitats occurred only infrequently.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

The biotic and abiotic factors in marine and freshwater eco-
systems differ considerably and impose physiological constraints
on organisms that pass through this salinity barrier. As a conse-
quence, the taxonomic compositions of the communities encoun-
tered in both environments are quite divergent. Some major
eukaryotic lineages are restricted to either marine or freshwater
environments. For example, radiolarians, echinoderms, most
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foraminiferans, most haptophytes, and pelagophytes are marine,
whereas no representative of the Mycetozoa has ever been found
in saltwater. In contrast, other eukaryote lineages occur in both
marine and freshwater/terrestrial habitats. For instance, crypto-
phytes, diatoms and dinoflagellates are abundant in both envi-
ronments. But even within these groups, phylogenetic studies
have indicated a limited number of marine/freshwater transi-
tions, suggesting that such events are rare in the evolutionary
history of different lineages (von der Heyden and Cavalier-Smith,
2005; Alverson et al., 2007; Cavalier-Smith and von der Heyden,
2007; Logares et al., 2007; Shalchian-Tabrizi et al., 2008; Cava-
lier-Smith, 2009). Likewise, even though at the morphospecies
level several microeukaryotic lineages appear to have wide salin-
ity ranges, molecular phylogenies show that they are uncommon
(Koch and Ekelund, 2005; Finlay et al., 2006; Scheckenbach et al.,
2006; Bass et al., 2007).
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The order Euglyphida Copeland, 1956, is a group of testate amoe-
bae with filamentous pseudopodia that build self-secreted silica
tests. Euglyphids are currently divided into five families: the Assu-
linidae, Euglyphidae, Trinematidae, Paulinellidae and Cyphoderii-
dae (Meisterfeld, 2002; Adl et al., 2005; Lara et al., 2007). These
organisms were considered as exclusive inhabitants of soil and
freshwater habitats up to the second part of the 20th century. Early
reports of Euglyphida from subsurface waters of the Pacific Ocean
(Wailes, 1927) were interpreted as imports from continental fresh-
waters. Since then, Euglyphida were more intensively investigated
in marine supralittoral environments and today, more than 50 spe-
cies were described from the marine supralittoral of the Black Sea
and other marine habitats of the World (Golemansky, 1974, 2007;
Ogden and Couteaux, 1989; Chardez, 1991; Golemansky and Todo-
rov, 1999). While the Assulinidae, Euglyphidae and Trinematidae
have been found almost exclusively in terrestrial or freshwater hab-
itats (for simplicity hereafter referred to as freshwater), the Cypho-
deriidae and the Paulinellidae are found also in the marine
supralittoral zone (Meisterfeld, 2002).

The marine supralittoral environment is characterized by vari-
able salinity values, which can fluctuate relatively rapidly between
typical seawater to less than 10‰ (Todorov and Golemansky, 2007;
Todorov et al., 2009). Thus, organisms inhabiting such an environ-
ment must face huge selective pressure to adapt to these harsh
conditions. The Cyphoderiidae are one of the few microeukaryotic
groups that have successfully colonised both environments. There-
fore, they represent an excellent model group to study the impact
of salinity in eukaryotic cell evolution.

The current Euglyphida taxonomy is largely based on shell char-
acters. Shells are composed of secreted plates which often differ in
shape, size and arrangement among species (Meisterfeld, 2002).
However, morphological data alone are often unreliable for testing
hypotheses of colonization processes because such characters can
be subject to convergent evolution during the marine to freshwater
transition (or vice versa) (Lee and Bell, 1999).

In order to overcome these current limitations, a detailed phy-
logenetic study of freshwater and marine supralittoral Euglyphida,
combining both molecular and morphological characters, is re-
quired. In this work, we inferred the molecular phylogenetic rela-
tionships between marine supralittoral and freshwater members
of the Cyphoderiidae using SSU rRNA gene sequences and docu-
mented the morphology of isolated species with scanning electron
microscopy. We hypothesised that only two separate marine and
freshwater phylogenetic clades existed in the Cyphoderiidae.
2. Materials and methods

2.1. Sampling and species identifications

We sampled cyphoderiidae species from freshwater aquatic
mosses and from subsurface waters of freshwater and marine sand
beaches at five Bulgarian, two Canadian and three Swiss sites (Ta-
ble 1). Following the most recent taxonomic revision (Chardez,
1991; Meisterfeld, 2002; Golemansky and Todorov, 2004, 2006;
Todorov et al., 2009), we identified six Cyphoderia, one Corythionel-
la and one Pseudocorythion morphotypes among a total of 15 pop-
ulations (Table 1). The morphology of seven of these 15
populations was recently investigated by Todorov et al. (2009).
This previous study revealed significant morphological differences
among Cyphoderia ampulla populations from Moiry (CH), Rhodopes
(BG) and Vitosha (BG), suggesting more than one taxon within the
C. ampulla morphospecies. This morphological study however
called for a complementary molecular study.

We used the classification proposed in the Illustrated Guide to
the Protozoa (Meisterfeld, 2002). Thus, Corythionella and Pseudoc-
orythion species belong to the Cyphoderiidae family although they
were initially described as members of the Psammonobiotidae
family (Golemansky, 1970; Valkanov, 1970; Chardez, 1991). In this
paper we use the terms ‘‘Euglyphid testate amoebae”, or ‘‘euglyph-
ids” to refer to the Euglyphida sensu stricto.

2.2. Testate amoebae isolation for DNA extractions and scanning
electronic imaging

The testate amoebae were isolated by sieving and back sieving.
With the exception of Cyphoderia cf. compressa, all samples from
the marine sand beaches were incubated between 4 and 8 weeks
in the laboratory, at about 20 �C prior to the isolation. For each
DNA preparation, between 5 and 100 individuals were isolated
individually under light microscope using fine diameter glass pip-
ettes. Cells were washed by transferring them three times into dis-
tilled water. A guanidine thiocyanate protocol was used to extract
DNA (Chomczynski and Sacchi, 1987). The shell ultrastructure of
selected individuals from each populations, excepting Cyphoderia
ampulla from Dragichevo, C. ampulla from Sofia and C. cf. compressa
from Tsawassen, were investigated by scanning electron micros-
copy (SEM) by Todorov et al. (2009) or in the present study (Figs. 1
and 2). For SEM, testate amoeba shells were mounted on stubs and
kept for 2 weeks in a desiccator. The shells were coated with gold
in a vacuum coating unit and observed either with a JEOL JSM-
5510 microscope at a tension of 10 kV or with a PHILIPS XL30
FEG microscope at a tension of 5 kV.

2.3. SSU rDNA amplification and sequencing

The 30 terminal fragment (708–765 bp) of the SSU rRNA gene and
a selected number of near full-length (1697–1795 bp) portions of
this gene were amplified by nested polymerase chain reaction
(PCR) with the universal eukaryotic primers in the first PCR (Table 2)
and then using a specific Cyphoderiidae primer and a universal
eukaryotic primer in the second PCR (Table 2). The PCR cycling pro-
file was the same for all PCRs: 30 s initial denaturation step (95 �C),
followed by 40 cycles of 95 �C for 30 s, 50 �C for 30 s, and 72 �C for
90 s and a final extension at 72 �C for 10 min. The PCR products were
purified using the High Pure PCR Purification Kit (Roche Diagnostics)
and cloned in TOPO TA cloning Kit (Invitrogen) or sequenced di-
rectly. Sequencing was carried out using a BigDye197 Terminator
Cycle Sequencing Ready Reaction Kit (Applied Biosystems) and ana-
lysed either with an ABI-3130xl or a 3730S 48-capillary DNA sequen-
cer (Applied Biosystems). Sequences are deposited in GenBank with
the Accession Numbers GU228850–GU228898.

2.4. Dataset constructions

Three data sets were used for phylogenetic analyses. The first
included 50 short Cyphoderiidae SSU rDNA sequences (682 bp).
The second comprises 43 near full-length SSU rDNA Euglyphida se-
quences (1461 bp) and the third included 43 Euglyphida as well as
21 environmental sequences (1461 bp). Publicly available SSU
rDNA environmental sequences from the Euglyphida were down-
loaded from GenBank through the taxonomy web site at National
Center for Biotechnology Information (http://www.ncbi.nlm.nih.-
gov). The sequences were found by BLAST searches using query se-
quences from all main Euglyphida families (i.e., Assulinidae,
Cyphoderiidae, Euglyphidae, Paulinellidae and Trinematidae).
These searches were finalized on October 20th 2009. Euglyphid se-
quences were manually fitted to a general alignment of eukaryotic
SSU rRNA gene sequences (Berney and Pawlowski, 2004) using the
BIOEDIT 7.0.9 sequence alignment editor (Hall, 1999). This last
alignment was based on a universal model of eukaryotic SSU rRNA
secondary structure (Van de Peer et al., 2000). Ambiguously
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Table 1
List of the Cyphoderiidae morphotaxa analysed and sampling locations.

Taxa Habitat Sampling location Country Sampling
date

Co-ordinates Altitude
(m)

Number of SSU rDNA
sequences (nb of
extractions)

PCR products
cloned (C) or
sequenced
directly (SD)

Short
fragment

Long
fragment

Corythionella
minima

Marine
supralittoral

Underground waters of
marine sand beach, Galata,
Black Sea

Bulgaria July 2006 43�100N 27�560E 0 2 (1) 1 (1) (C)

Cyphoderia
amphoralis

Freshwater Sphagnum mosses, Rila Bulgaria August
2005

42�120N 23�220E 1960 3 (3) 1 (1) (SD)

Cyphoderia
ampulla

Freshwater Aquatic mosses, Moiry Switzerland July 2006 46�080N 07�340E 2310 3 (2) 2 (2) (SD)

Cyphoderia
ampulla

Freshwater Sphagnum mosses,
Dragichevo

Bulgaria August
2006

42�360N 23�090E 960 3 (2) 1 (1) (SD)

Cyphoderia
ampulla

Freshwater Sphagnum mosses, Rhodopes Bulgaria July 2005 41�590N 24�100E 1109 6 (2) 1 (1) (SD)

Cyphoderia
ampulla

Freshwater Sphagnum mosses, Sofia,
South Park

Bulgaria August
2006

42�390N 23�180E 610 2 (2) – (SD)

Cyphoderia
ampulla

Freshwater Sphagnum mosses, Vitosha Bulgaria August
2006

42�360N 23�170E 1850 2 (2) 1 (1) (SD)

Cyphoderia
ampulla

Freshwater Underground waters of
freshwater sand beach, Lake
Geneva, St-Sulpice

Switzerland May 2008 46�300N 06�320E 375 3 (3) 3 (3) (SD)

Cyphoderia cf.
compressa

Marine
supralittoral

Underground waters of
marine supralittoral sand
beach, Tsawassen, Pacific
Ocean

Canada October
2008

49�010N 123�060 0 1 (1) 1 (1) (SD)

Cyphoderia
compressa

Marine
supralittoral

Underground waters of
marine supralittoral sand
beach, Galata, Black Sea

Bulgaria July 2006 43�100N 27�560E 0 11 (3) 3 (3) (C)

Cyphoderia
littoralis

Marine
supralittoral

Underground waters of
marine supralittoral sand
beach, Galata, Black Sea

Bulgaria July 2006 43�100N 27�560E 0 3 (1) 1 (1) (C)

Cyphoderia
major

Freshwater Sphagnum mosses, Rila Bulgaria August
2005

42�120N 23�220E 1960 2 (1) 1 (1) (SD)

Cyphoderia
ampulla

Freshwater Aquatic mosses, Cape
Breton, Nova Scotia

Canada July 2008 46�480N 60�490W 236 2 (1) 1 (1) (SD)

Cyphoderia
trochus ssp.
palustris

Freshwater Wet mosses, Marchairuz Switzerland February
2007 and
May 2008

46�330N 06�140E 1359 4 (4) 4 (4) (SD)

Pseudocorythion
acutum

Marine
supralittoral

Underground waters of
marine supralittoral sand
beach, Galata, Black Sea

Bulgaria May 2008 43�100N 27�560E 0 2 (2) 2 (2) (SD)
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aligned regions, gaps, highly divergent sequences (e.g., Tracheleu-
glypha dentata and three environmental sequences) and two envi-
ronmental sequences (AY620296 and AY620297) with unclear
affiliation within the Euglyphida were excluded from the analyses.
Additionally, only one environmental sequence was selected when
several identical or nearly identical environmental sequences were
available in GenBank. Corythionella minima and Pseudocorythion
acutum, which branch as a sister group to the Cyphoderia genus
(Fig. 3), were used as outgroups in the first tree. The second and
the third trees were rooted with six thaumatomonad sequences,
the inferred sister group of the Euglyphida (Adl et al., 2005).
2.5. Phylogenetic analyses

Phylogenetic analyses were performed with maximum likeli-
hood using RAxML (Stamatakis et al., 2008) and Bayesian inference
methods using MrBayes v. 3.1.2 (Huelsenbeck and Ronquist, 2001).
The MrAIC program (Nylander, 2004) identified the general-time-
reversible model with invariable sites and gamma distribution
(GTR + G) as the most appropriate model of sequence evolution
for the first and third data sets and the general-time-reversible
model with invariable sites and gamma distribution (GTR + I + G)
as the most appropriate model for the second data set. For the
three data sets, maximum likelihood analyses were run for 1000
replicates and the most likely tree chosen from those runs. Boot-
strap proportions (BS) were estimated under the same conditions
for 1000 pseudoreplicates. Bayesian analyses were performed for
the second and third data sets only. Three simultaneous Markov
chains were run up to 10 million generations from a random start-
ing tree. Trees were sampled every 10 generations. The first
250,000 trees were discarded as the burn in after checking that
the chains had converged. The resultant trees were used to calcu-
late the posterior probabilities (PP) for each node. The convergence
of the Markov chains were graphically estimated by plotting the
sample values versus the iteration values as well as by using diag-
nostics criteria produced by the ‘‘sump” command in MrBayes
(PSRF = 1.00). Bayesian analyses were run through the Bioportal
web-based service platform for phylogenomic analysis at the Uni-
versity of Oslo (www.bioportal.uio.no).
3. Results

3.1. Phylogenetic trees based on Euglyphida SSU rRNA sequences

We first performed a phylogenetic analysis based on a short SSU
rDNA alignment including 50 sequences (682 bp) from marine supr-
alittoral and freshwater Cyphoderiidae populations (Table 1).
Extractions from the same population always gave almost identical
sequences (between 99.5% and 100% identity), and revealed 14 dis-
tinct clades. However, the relationships among clades were not well

http://www.bioportal.uio.no


Fig. 1. Scanning electron micrographs of marine supralittoral Cyphoderiidae morphotaxa. The illustrated individuals correspond to the sequenced populations. The detailed
pictures at the center and on the right show respectively the pseudostome and the arrangement of the scales. A–C, Corythionella minima from Galata (BG); D–F,
Pseudocorythion acutum from Galata (BG); G–I, Cyphoderia littoralis from Galata (BG); J–L, Cyphoderia compressa from Galata, Black Sea (BG). Scale bars represent 10 lm in all
pictures excepted for the detailed pictures of arrangement of the scales (C, F, I and L) scale bars represent 5 lm (G, H and I from Todorov et al., 2009).
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resolved, showing no consistent groupings across Bayesian and
maximum likelihood analyses (Supplementary material Fig. 1). In
order to increase the phylogenetic signal and to clarify the relation-
ships between these clades, we analysed a longer SSU rDNA data set
(1461 bp) including 24 Cyphoderiidae sequences and 19 sequences
of the Paulinellidae, Trinematidae, Assulinidae, and Euglyphidae
families (Fig. 3). At least one sequence of each of 14 Cyphoderiidae
clades mentioned above was represented in this analysis.

Phylogenetic trees inferred from Bayesian and maximum likeli-
hood approaches showed quite similar topologies (Fig. 3). Marine
supralittoral and freshwater Euglyphida species were segregated
into three major clades (Fig. 3). The first clade included freshwater
testate amoebae of the Trinematidae, Assulinidae and the Euglyph-
idae families, the second well-supported clade was constituted of
marine and non-marine Cyphoderiidae phylotypes while the two
freshwater Paulinella chromatophora sequences formed a third
well-supported clade. The Paulinellidae clade branched as a sister
group to the Cyphoderiidae clade with moderate statistical support
(97% BS and 0.84 PP). Within the Cyphoderiidae clade, the marine
supralittoral Pseudocorythion acutum, Corythionella minima and
Cyphoderia littoralis phylotypes had an early diverging position rel-
ative to the other sequences in the analysis (Fig. 1A–I and Fig 3).
The phylogenetic relationships among the marine supralittoral
species C. compressa (Fig. 1J–L) and C. cf. compressa and the two
separated freshwater sub-clades were moderately supported
(Fig. 3). The highly supported freshwater sub-clades 1 (97% BS
and 1.00 PP) comprised Cyphoderia amphoralis, C. trochus ssp. palus-
tris and C. ampulla from Cape Breton, Rhodopes, Vitosha and Drag-
ichevo – this clade was composed of isolates having a shell built of
overlapping or slightly overlapping scales (Fig. 2A–O); and the
highly supported subclade 2 (100% BS and 1.00 PP) comprised
freshwater lineages C. major and C. ampulla from Lake Geneva
(Switzerland), Aachen (Germany), and Moiry (Switzerland) – this
clade was composed of isolates having a shell built of non-overlap-
ping scales (Fig. 2P–X). The morphospecies C. ampulla was thus a
polyphyletic entity including five distinct phylotypes (sequence
divergence >1% among the five C. ampulla clusters), (Supplemen-
tary material Fig. 1, Fig. 2D–L and P–U, Table 1).

3.2. Phylogenetic trees inferred from euglyphid and environmental SSU
rRNA sequences

In order to evaluate the phylogenetic relationships between
marine supralittoral and freshwater Euglyphida species more



Fig. 2. Scanning electron micrographs of freshwater Cyphoderiidae morphotaxa. The illustrated individuals correspond to the sequenced populations. The detailed pictures
show the arrangement of the scales, the pseudostome or the extremity of the shell. (A–O) Represent individuals of the subclade 1 characterized by species having overlapping
or slightly overlapping scales and. (P–X) Represent individuals of the subclade 2 characterized by species having non-overlapping scales. (A–C) Cyphoderia amphoralis from
Rila (BG). (D–F) Cyphoderia ampulla from Rhodopes (BG). (G–I) Cyphoderia ampulla from Vitosha (BG). (J–L) Cyphoderia ampulla from Cape Breton (CAN). (M–O) Cyphoderia
trochus ssp. palustris from Marchairuz (CH). (P–R) Cyphoderia ampulla from Moiry (CH). (S–U) Cyphoderia ampulla from Geneva Lake (CH). (V–X) Cyphoderia major from Rila
(BG). Scale bars on the left, at the center and on the right correspond respectively to 20, 10 and 5 lm (pictures A, B, P–R and V–X from Todorov et al., 2009).

T.J. Heger et al. / Molecular Phylogenetics and Evolution 55 (2010) 113–122 117



Table 2
Sequences of SSU and COI primers used in this study.

Name Specificity Sequence (50–30) Direction Location (on E. rotunda X77692)

A10S1 Most eukaryote CTCAAAGATTAAGCCATGC Forward 35
CercoR Most cercozoa GGTCGAGGTCTCGTTCGTTAACGG Reverse 1331
Cyphrevba Most Cyphoderiidae CACATAATCTGCCAATGGAGTCG Reverse 1078
Eugl ba Most Cyphoderiidae CGACTCCATTGGCA Forward 1078
s12.2 Universal eukaryotic primer GATCAGATACCGTCGTAGTC Forward 1013
sB Universal eukaryotic primer TGATCCTTCTGCAGGTTCACCTAC Reverse 1781
SSUcyphoa Most Cyphoderiidae CTATACCGACTATCGATCAGTG Forward 1044

a Primers newly designed in this study.

Euglypha rotunda AJ418782
 Euglypha rotunda X77692
Euglypha filifera AJ418786
Euglypha  tuberculata AJ418787

Euglypha rotunda AJ418783
Euglypha rotunda AJ418784

Euglypha cf. ciliata EF456754

Euglypha filifera AJ418785
Euglypha acanthophora AJ418788

Trinema enchelys AJ418792
Trinema lineare EF456752

Trachelocorythion pulchellum AJ418789

Assulina muscorum AJ418791
Assulina seminulum EF456749

Placocista spinosa EF456748

Cyphoderia ampulla AJ418793 (GER)

 Paulinella chromatophora X81811 Paulinellidae

Assulinidae

Euglyphidae

C
yphoderiidae

Euglyphida

Trinematidae

Freshwater 
subclade 1
Shell with 
overlapping 
scales

Freshwater 
subclade 2
Shell with 
non-overlapping 
scales

Thaum
ato-

 m
onadida

Pseudocorythion acutum,  Galata (BG) 1
Pseudocorythion acutum, Galata (BG) 2

Cyphoderia littoralis, Galata (BG) 1

Corythionella minima, Galata (BG) 1

Cyphoderia compressa, Galata (BG) 1
Cyphoderia compressa, Galata (BG) 2
Cyphoderia compressa, Galata (BG) 3

Cyphoderia cf. compressa, Tsawassen (CAN) 

Cyphoderia ampulla, Vitosha (BG) 1
Cyphoderia ampulla, Dragichevo (BG) 1

Cyphoderia ampulla, Rhodopes (BG)  1

Cyphoderia trochus ssp. palustris, Marchairuz (CH) 1
Cyphoderia trochus ssp. palustris, Marchairuz (CH) 2
Cyphoderia trochus ssp. palustris, Marchairuz (CH) 3
Cyphoderia trochus ssp. palustris, Marchairuz (CH) 4

Cyphoderia ampulla, Cape Breton (CAN) 1
Cyphoderia amphoralis Rila (BG) 1

Cyphoderia major, Rila (BG) 1

Cyphoderia ampulla, Lake Geneva  (CH) 1
Cyphoderia ampulla, Lake Geneva  (CH) 2
Cyphoderia ampulla, Lake Geneva  (CH) 3

Cyphoderia ampulla, Moiry (CH) 1
Cyphoderia ampulla,  Moiry (CH) 2

Allas sp. JJP-2003  AY268040

0.02

 Corythion dubium EF456751 

Euglypha penardi EF456753 

Paulinella chromatophora FJ456918
100

97

90

56

97

81

75

52

100

98

100

100

100

100

100

100

98

100

97

100

100

100

100

87

98

99

96

98

88

88

89

86

0.84

1.00

1.00

1.00

1.00

1.00
0.99

1.00

0.95

1.00

0.73

1.00

1.00

1.00 1.00

1.00

1.00

1.00

1.00

0.97

0.60

1.00

1.00

0.96

0.97

0.74

1.00

1.00

1.00

1.00

1.00

1.00

1.00
100

0.95

Allas sp. JJP-2003  AY268040

Thaumatomonas seravini AY496044
Allas sp. AF411263  

Thaumatomonas sp. AF411260 
Allas diplophysa AF411262

Fig. 3. Phylogenetic tree of 43 SSU rDNA Euglyphida sequences based on 1461 nucleotide positions. Distances of the phylogenetic tree are derived from a RAxML analysis.
Numbers represent values of posterior probabilities as calculated with Bayesian analyses and the bootstraps obtained by the maximum likelihood method. A dash indicates
that the topology shown is not supported with Bayesian analyses. Marine supralittoral and freshwater Euglyphida lineages are marked with grey and black lines respectively.
Data obtained in this study are denoted in bold. The tree was rooted with six thaumatomonads.
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broadly, we analyzed an additional dataset (1461 bp) including 21
short environmental sequences assigned to the Euglyphida (Fig. 4).
The validity of the two major groups inferred in the former analysis
was confirmed (100% BS and 1.00 PP). Ten environmental se-
quences derived from soil samples branched within the clade
formed by the families Trinematidae, Assulinidae and the Euglyph-
idae (more specifically inside Trinematidae). Five marine environ-
mental sequences and the freshwater Paulinella chromatophora
were closely related and formed a third robust monophyletic group
(Paulinellidae clade, Fig. 4). Two environmental sequences from
the marine supralittoral environment (AY620307 and AY620315)
branched at the base of all other Cyphoderiidae sequences. Two
additional marine supralittoral environmental sequences
(AY620326 and AY620325) branched among the marine supralit-
toral Cyphoderiidae sequences and the soil sequence AY620259
branched within the freshwater Cyphoderiidae subclade 1. Supra-
littoral environmental sequence AY620293 and C. compressa (sensu
lato) formed a sister group to the freshwater subclade 1.

4. Discussion

4.1. Marine supralittoral–freshwater transitions

Several studies have suggested that the physiochemical differ-
ences between marine and freshwaters environments represent a
strong barrier that cannot be crossed by most eukaryotic species



Fig. 4. Phylogenetic tree of 43 Euglyphida and 21 environmental SSU rDNA sequences based on 1461 nucleotide positions. The best-fit model selected in MrAIC (Nylander)
was the general-time-reversible model with gamma distribution (GTR + I + G). Numbers represent values of posterior probabilities as calculated with Bayesian analyses and
the bootstraps obtained by the maximum likelihood method. A dash indicates that the bootstraps values are lower than 50. Marine and freshwater Euglyphida lineages are
marked with grey and black lines, respectively. Marine, marine supralittoral and freshwater Euglyphida lineages are marked with large grey, grey and black lines,
respectively. Lines with unclear marine or freshwater origin are indicated with dashed lines. Data obtained in this study are denoted in bold. The tree was rooted with six
thaumatomonads.
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(Alverson et al., 2007; Logares et al., 2007, 2009; Shalchian-Tabrizi
et al., 2008; Cavalier-Smith, 2009). As an extension of this research,
our aim was to study the molecular phylogenetic relationships be-
tween marine supralittoral and freshwater cyphoderiid testate
amoebae as a model system for inferring the frequency of habitat
transitions in microbial eukaryotes.

The phylogenetic analyses of isolated euglyphids and related
environmental sequences from GenBank demonstrated the exis-
tence of three highly divergent clades. The first clade comprised
one Paulinella chromatophora sequence isolated from freshwater
and five marine environmental sequences of unknown morphology
(Fig. 4). Previous species descriptions based on morphology also
suggest that the only truly marine species within the Euglyphida
belong to the genus Paulinella (Wulff, 1916; Vors, 1993; Hannah
et al., 1996; Nicholls, 2009). Paulinella chromatophora was reported
from both freshwater habitats and brackish waters (Pankow, 1982;
Yoon et al., 2009). It is unclear whether the P. chromatophora mor-
phospecies corresponds to a single euryhaline species or to differ-
ent phylotypes having potentially distinct salinity requirements.
This genus alone, therefore, represents another interesting subject
for studying marine–freshwater transitions.

The second clade comprises freshwater and marine supralittoral
sequences within the Cyphoderiidae. The third clade comprises the
freshwater Trinematidae, Assulinidae and Euglyphidae. Neither
studies based on comparative morphology nor molecular phyloge-
netic data have yet convincingly demonstrated the existence of any
marine or marine supralittoral species within these three families,
which includes more than 80% of the total number of described
Euglyphida taxa (Meisterfeld, 2002). Indeed, the only specimens
within these three families reported in marine environments were
mostly observed in the Baltic Sea where the salinity is very low
(less than 4.5‰) and in most cases it was unclear if these reports
concerned living individuals or empty shells.

The concordance between the morphology-based taxonomy
and molecular phylogenetic data at the genus/major morphotype
level suggests that a more extensive phylogeny will demonstrate
only few additional transitions between marine supralittoral and
freshwater environments within the Euglyphida.

The phylogenetic clustering of the Cyphoderiidae in our analy-
ses suggests that transitions between marine supralittoral and
freshwater habitats are infrequent and occurred only twice in this
clade. Freshwater Cyphoderia species emerge as two monophyletic
sub-clades (Figs. 3 and 4). However, the phylogenetic relationships
among the two freshwater sub-clades and C. compressa (sensu lato)
are not strongly supported. We therefore cannot exclude that all
freshwater phylotypes constitute a single clade. Such a scenario
would suggest only one transition between marine supralittoral
and freshwater habitats. This hypothesis would be consistent with
the morphological characteristics of the two freshwater sub-
clades. Freshwater morphotaxa are characterized by circular
cross-sections while C. compressa (sensu lato) are characterized
by laterally compressed shells. Clarifying the phylogenetic rela-
tionships among the two freshwater sub-clades and the C. com-
pressa (sensu lato) would require sequencing additional genes
and/or including potential missing organisms in our phylogenies.

The Cyphoderiidae contains five genera: Corythionella, Cyphode-
ria, Messemvriella, Pseudocorythion and Schaudinnula; Nicholls
(2003b) transferred Campascus into the Psammonobiotidae. The
genera Pseudocorythion and Corythionella, which are each repre-
sented in our phylogeny by only one taxon, comprise four and nine
species, respectively. While Pseudocorythion comprises only mar-
ine supralittoral species (Meisterfeld, 2002), two among 10 Cory-
thionella species occur in freshwater (Nicholls, 2003a, 2005, 2007,
2009). This suggests one more transition between marine supralit-
toral and freshwater environments among the Corythionella genus.
Based on morphology, we expect the two marine supralittoral
Messemvriella species to be closely related to Pseudocorythion and
Corythionella because they share several distinct morphological
features. However, Messemvriella species differ from Pseudocorythi-
on by the lack of a caudal horn and from Corythionella by the circu-
lar transverse section and the arrangement of the scales
(Golemansky, 1973; Meisterfeld, 2002). Additionally, it would be
very interesting to determine the phylogenetic position of the only
species of Schaudinnula. By contrast to all other Cyphoderiidae spe-
cies, the shell of this very rare and poorly documented freshwater
species is composed of irregularly overlapping scales (Schönborn,
1965; Meisterfeld, 2002).

4.2. Other potential factors

The marine supralittoral is a specific environment characterized
by fluctuating salinity. Several macroorganisms such as some lit-
torinid snails (Judge et al., 2009) or microorganisms such as some
Cyphoderiidae species are restricted to this environment (Gol-
emansky, 2007). However, given the fact that data on marine micr-
oeukaryotic diversity remain quite limited with of the exception of
the pelagic euphotic zone, we can not completely exclude the pres-
ence of Cyphoderiidae species in benthic or pelagic marine envi-
ronments (Cuvelier et al., 2008; Epstein and Lopez-Garcia, 2008).
Detecting Cyphoderiidae species in truly marine environments
would require a taxon-specific primer approach as successfully
used by Bass and Cavalier-Smith (2004) Bass et al. (2007) or Lara
et al. (2009) for revealing poorly explored protist lineages in envi-
ronmental DNA surveys.

Besides salinity, numerous other factors (e.g., pH, oxygen con-
tent, organic versus mineral substrate) may influence protist com-
munities and restrict some species to specific habitats (Fallu and
Pienitz, 1999; Booth et al., 2008). In this study, substrates generally
differ between marine and freshwater Cyphoderiidae samples (Ta-
ble 1). However, substrates differences are unlikely to account for
the infrequent transition between marine supralittoral and fresh-
water habitats. The freshwater Cyphoderia ampulla isolated from
sandy habitat branches among other freshwater Cyphoderia species
isolated from aquatic mosses and not within marine supralittoral
Cyphoderia species isolated from a sandy habitat. Several freshwa-
ter and marine supralittoral species of unrelated taxonomical
groups, such as Pseudocorythion acutum or Corythionella minima,
are characterized by large apertural collars. This morphological
feature is considered an adaptation to the substrate (i.e., to life
on sand grains rather than to freshwater or marine environments
per se (Meisterfeld, 2002).

4.3. Cryptic cyphoderiid diversity

The existence of cryptic or pseudo-cryptic species may have
high relevance in explaining disjunctive geographic distribution
patterns or functional niches. Among microeukaryotes, such as
within the Foraminifera or within Bacillariophyceae, cryptic spe-
cies are relatively abundant (de Vargas et al., 1999; Pawlowski
and Holzmann, 2002; Beszteri et al., 2005; Darling and Wade,
2008). Within the Euglyphida, cryptic species were so far reported
only from two Euglypha morphospecies (Wylezich et al., 2002).

Our molecular phylogenetic data revealed the existence of cryp-
tic species within the Cyphoderiidae. The environmental sequence
data suggests the existence of two marine supralittoral species
from Canada (AY620325 and AY620326) closely related to C. litto-
ralis and therefore of the existence of undescribed diversity within
this taxon. The morphospecies Cyphoderia ampulla is represented
by five different phylotypes distributed throughout two distinct
freshwater sub-clades in our trees and is therefore a polyphyletic
taxon. The phylotypes of these two sub-clades are characterized
by distinct arrangements of the scales as revealed by SEM analyses.
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The first one includes C. amphoralis, C. trochus ssp. palustris and C.
ampulla from Cape Breton, Rhodopes, Vitosha and Dragichevo
and is composed of isolates having a shell built of overlapping
scales. C. ampulla sequences from Vitosha and Dragichevo are al-
most identical to each other (sequence divergence <1%) but differ
from C. ampulla from Cape Breton and Rhodopes. The second fresh-
water subclade (Fig. 2), represented by C. major and C. ampulla
from Geneva Lake (Switzerland), Aachen (Germany), and Moiry
(Swiss Alps), is characterized by specimens having a shell com-
posed of non-overlapping scales. The Cyphoderia ampulla sequence
from Moiry is almost identical to the C. ampulla from Germany
which was the only Cyphoderiidae sequence previously available
in GenBank.

These results are consistent with a previous biometrical study
that suggested the existence of at least two different taxa within
C. ampulla morphotype (Todorov et al., 2009). In our study, differ-
ent C. ampulla phylotypes were isolated from distinct ecological
habitats such as underground water of a sandy beach on Lake Gen-
eva, aquatic mosses in an Alpine stream or Sphagnum mosses of an
oligotrophic peatbog (Table 1). Because C. ampulla morphotypes in-
cludes cryptic species having probably different ecological require-
ments, the Cyphoderia ampulla morphotype should be used with
extreme caution for biogeographical, paleoecological or ecological
studies. The taxonomic status of some Cyphoderiidae species
should be revised. Therefore, a DNA barcoding approach coupled
with traditional taxonomic tools would be very useful for clarifying
the cyphoderiid taxonomy. The cryptic and pseudo-cryptic diver-
sity revealed by this study and the one of Todorov et al. (2009) sug-
gest that the total diversity of genus Cyphoderia, and therefore
most likely the Euglyphida as a whole is much higher than cur-
rently recognised.
5. Conclusions

The results of this study provide the first insights into phyloge-
netic relationships between freshwater and marine supralittoral
species. In our phylogenies, transitions between marine supralit-
toral and freshwater habitats occur only once or twice within the
Cyphoderia genus.

Although our phylogenies do not include all described species,
morphological-based taxonomy suggests only a small number of
additional transitions within the Cyphoderiidae but none within
the exclusively freshwater Trinematidae, Assulinidae and Euglyph-
idae clades, which comprise the majority of the known euglyphid
species.

This reinforces the hypothesis that transitions of microeukary-
otes are infrequent between truly marine (s. str. or supralittoral)
and freshwater environments (or vice versa) and shows that the
Euglyphida offer a valuable system for studying marine–freshwa-
ter transitions.
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