Figure S1. Ali et al.

Ustilago hordei life cycle
Figure S2. Ali et al.

A

EtBr autorad

EtBr autorad

EtBr autorad

Uh364 yeast Uh362

kb

1,100+ 1,100+ 1,100+

1,100+ 945 915

1,100+ 915 815

915 785 745

785 680 610

680 555 295

667

Uh364 Chr18 = 667 kb

probe: UHOR_10021 gene 16

probe: UHOR_10022 gene 17

probe: UHOR_08123 gene 23

B

EtBr autorad

EtBr autorad

EtBr autorad

Uh364 Uh362

~ 150 kb

probe: 1.5 kb UHOR_10022 3’-flank
Figure S3A, continued
Figure S3C

*UHOR_10021 - *Uhavr1* locus region in virulent isolates*

983

Uh364brk	CAAGTAGTGTATCTAATTTCA-------------
Uh822	CAAGTAGTGATCTATTCCAGTTGAGTCATTTTCAGTCAGGCTTCTTCGGGTCATTGTCGAGGTTTCCGGTTAGATGGTGATGGTAG
Uh811	CAAGTAGTGATCTATTCCAGTTGAGTCATTTTCAGTCAGGCTTCTTCGGGTCATTGTCGAGGTTTCCGGTTAGATGGTGATGGTAG
Uh818	CAAGTAGTGATCTATTCCAGTTGAGTCATTTTCAGTCAGGCTTCTTCGGGTCATTGTCGAGGTTTCCGGTTAGATGGTGATGGTAG
Uh815	CAAGTAGTGATCTATTCCAGTTGAGTCATTTTCAGTCAGGCTTCTTCGGGTCATTGTCGAGGTTTCCGGTTAGATGGTGATGGTAG
Uh805	CAAGTAGTGATCTATTCCAGTTGAGTCATTTTCAGTCAGGCTTCTTCGGGTCATTGTCGAGGTTTCCGGTTAGATGGTGATGGTAG
Uh362	CAAGTAGTGATCTATTCCAGTTGAGTCATTTTCAGTCAGGCTTCTTCGGGTCATTGTCGAGGTTTCCGGTTAGATGGTGATGGTAG
Uh820	CAAGTAGTGATCTATTCCAGTTGAGTCATTTTCAGTCAGGCTTCTTCGGGTCATTGTCGAGGTTTCCGGTTAGATGGTGATGGTAG

Comparison of *Uhavr1* locus sequences among seven virulent isolates, focusing on the region after the ‘breakpoint’ where Uh362 (grey) diverges from sequences in avirulent isolate Uh364 (brk, highlighted in yellow). The 10-bp repeat unit is in red. The base position is as in panel B.
Figure S3D
Figure S4. Ali et al.

A. Diagram showing the genes C18A2, C18A3, and C18A4 with their respective deletions (ΔC18A2, ΔC18A3, and ΔC18A4) and the probes used (Probe 3F).

B. Gel showing the wild type (wt) and ΔC18A2 samples with the probes used.

C. Gel showing the wild type (wt) and ΔC18A3 samples with the probes used.

D. Gel showing the wild type (wt) and ΔC18A4 samples with the probes used.
Figure S5. Ali et al.
Figure S6. Ali et al.

A

\text{gene 16} \quad \text{gene 17} \\
\text{10022-5F} \quad \text{10022-3F} \\
\Delta \text{UhAvr1}

B

\text{wild type Uh364} \\
\text{BgIII} \quad 1.8 \text{ kb} \\
\text{UhAvr1} \quad \text{Probe 3F} \\
\text{Uh364} \quad 1 \quad 2 \quad 3 \quad 4 \quad 5

\text{\Delta UhAvr1} \\
\text{BgIII} \quad 3.6 \text{ kb} \\
\text{Cbx} \\
\text{Uh364} \quad 1 \quad 2

C

\text{BgIII} \quad 7.5 \text{ kb} \\
\text{UhAvr1} \quad \text{GFP} \quad \text{Zeo}\text{r} \\
\text{Uh1289} \quad 1 \quad 2

\text{7.5} \quad \text{3.6} \quad 1.8
Figure S7. Ali et al.

A

Avr1 (Uh364)

BAC3-A2 (117 kb)

C18A2

(Δ38.5 kb)

B

Infected Plants (%) vs. Odessa, Hannchen, Odessa, Hannchen, Odessa, Hannchen, Odessa, Hannchen

wild type ΔC18A2 complemented with BAC1-6 ΔC18A2
Identification of specific domains in UhAVR1p and comparison to other Ustilaginaceae effectors. Full-length UhAVR1p is 190 aa and has a calculated Mw of 21 kDa and an estimated pI of 8.17 (Protein Calculator v3.3). SignalP 4.1 predicts a 19 aa signal peptide (SP, in red) resulting in a processed protein of 18.9 kDa and an estimated pI=7.75. If 20 aa are cleaved off, then the protein is predicted as myristoylated (prediction by http://mendel.imp.ac.at/myristate/SUPLpredictor.htm). K39 (in blue) has a high probability of being a sumoylation site / SUMO protein attachment site (score 0.85 in SUMOplot Analysis Program, http://www.abgent.com/tool, and 0.967 in http://sumosp.biocuckoo.org/index.php).

A. Secondary structure prediction using SWISS-MODEL http://swissmodel.expasy.org/workspace[1]; C, coil; E, extended beta; H, helix. B. A CLUSTAL 2.1 multiple sequence alignment of UhAVR1p and three effector homologs from U. maydis and Sporisorium reilianum (um05295, um10554 and Sr10052). The RxLR motifs (highlighted) which have been implicated in membrane PI3P binding and effector uptake in other fungal and oomycete effectors, line up with the PDFR motif in UhAVR1p (orange in A).

Figure S9. Ali et al.

A

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>gene 16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gene 16-SP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UhAvr1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UhAvr1-SP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uh1041</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2*</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>gfp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UhAvr1:gfp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C grown with zeomycin selection

C

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Uh1041</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uh1250</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uh1251</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uh1253</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uh1254</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uh1255</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uh1256</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uh1257</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uh1258</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Infected plants (%)

- gene 16
- gene 16-SP
- UhAvr1
- UhAvr1-SP
Figure S10. Ali et al.

A

wild type

<table>
<thead>
<tr>
<th>Probe 3F</th>
</tr>
</thead>
<tbody>
<tr>
<td>XhoI</td>
</tr>
<tr>
<td>8 kb</td>
</tr>
<tr>
<td>XhoI</td>
</tr>
<tr>
<td>C18A2</td>
</tr>
</tbody>
</table>

ΔC18A2

<table>
<thead>
<tr>
<th>Probe 3F</th>
</tr>
</thead>
<tbody>
<tr>
<td>XhoI</td>
</tr>
<tr>
<td>5.4 kb</td>
</tr>
<tr>
<td>XhoI</td>
</tr>
<tr>
<td>Cbx-DG</td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th>Infected Plants (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Odessa 364x362</td>
</tr>
<tr>
<td>Hannchen 364x362</td>
</tr>
<tr>
<td>Odessa 1041x1116</td>
</tr>
<tr>
<td>Hannchen 1041x1116</td>
</tr>
<tr>
<td>Odessa 1041x1117</td>
</tr>
<tr>
<td>Odessa 1041x1118</td>
</tr>
</tbody>
</table>

Infected Plants (%)
Table S1. *U. hordei* genes located on BAC3-A2 (117 kb) and their homologs in *U. maydis*

<table>
<thead>
<tr>
<th>Number</th>
<th>U. hordei MIPS ID</th>
<th>U. maydis homolog</th>
<th>Um number</th>
<th>E-Value</th>
<th>Percent Identity</th>
<th>Percent Similarity</th>
<th>score/selfscore ratio query</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>UHOR_08121</td>
<td>um05292</td>
<td>4</td>
<td>0</td>
<td>82.8</td>
<td>94.4</td>
<td>0.85</td>
<td>related to DigA protein</td>
</tr>
<tr>
<td>2</td>
<td>UHOR_13886</td>
<td>um10151</td>
<td>2.1E-38</td>
<td>42.9</td>
<td>63.9</td>
<td>0.15</td>
<td></td>
<td>hypothetical protein</td>
</tr>
<tr>
<td>3</td>
<td>UHOR_13887</td>
<td>no hit in Um</td>
<td>0.04</td>
<td>36</td>
<td>52</td>
<td>0.13</td>
<td></td>
<td>hypothetical protein</td>
</tr>
<tr>
<td>4</td>
<td>UHOR_13888</td>
<td>um04317</td>
<td>0.02</td>
<td>26.4</td>
<td>45.5</td>
<td>0.06</td>
<td></td>
<td>hypothetical protein</td>
</tr>
<tr>
<td>5</td>
<td>UHOR_08127</td>
<td>um04656</td>
<td>1.5E-44</td>
<td>34.2</td>
<td>62.6</td>
<td>0.28</td>
<td></td>
<td>conserved hypothetical Ustilaginaceae-specific protein *</td>
</tr>
<tr>
<td>6</td>
<td>UHOR_08128</td>
<td>um05306</td>
<td>0.01</td>
<td>36.4</td>
<td>56.8</td>
<td>0.14</td>
<td></td>
<td>hypothetical protein</td>
</tr>
<tr>
<td>7</td>
<td>UHOR_13890</td>
<td>um00543</td>
<td>0</td>
<td>62.4</td>
<td>88.6</td>
<td>0.54</td>
<td></td>
<td>conserved hypothetical protein</td>
</tr>
<tr>
<td>8</td>
<td>UHOR_10014</td>
<td>um02565</td>
<td>0</td>
<td>33.5</td>
<td>56.3</td>
<td>0.29</td>
<td></td>
<td>conserved hypothetical protein</td>
</tr>
<tr>
<td>9</td>
<td>UHOR_10015</td>
<td>um12288</td>
<td>4.6E-05</td>
<td>20.3</td>
<td>54.2</td>
<td>0.05</td>
<td></td>
<td>hypothetical protein</td>
</tr>
<tr>
<td>10</td>
<td>UHOR_10016</td>
<td>um02285</td>
<td>0.01</td>
<td>25</td>
<td>52</td>
<td>0.29</td>
<td></td>
<td>conserved hypothetical protein</td>
</tr>
<tr>
<td>11</td>
<td>UHOR_13893</td>
<td>um11726</td>
<td>6E-18</td>
<td>46.1</td>
<td>68.5</td>
<td>0.18</td>
<td></td>
<td>conserved hypothetical Ustilaginaceae-specific protein</td>
</tr>
<tr>
<td>12</td>
<td>UHOR_10017</td>
<td>um02745</td>
<td>2.4E-16</td>
<td>30.6</td>
<td>57.5</td>
<td>0.23</td>
<td></td>
<td>conserved hypothetical protein</td>
</tr>
<tr>
<td>13</td>
<td>UHOR_10018</td>
<td>um00776</td>
<td>8.8E-05</td>
<td>25.3</td>
<td>53.2</td>
<td>0.11</td>
<td></td>
<td>conserved hypothetical Ustilaginaceae-specific protein</td>
</tr>
<tr>
<td>14</td>
<td>UHOR_10019</td>
<td>um06249</td>
<td>6</td>
<td>25.8</td>
<td>60.3</td>
<td>0.14</td>
<td></td>
<td>conserved hypothetical protein</td>
</tr>
<tr>
<td>15</td>
<td>UHOR_10020</td>
<td>um02747</td>
<td>6E-15</td>
<td>27.8</td>
<td>59.3</td>
<td>0.17</td>
<td></td>
<td>conserved hypothetical Ustilaginaceae-specific protein</td>
</tr>
<tr>
<td>16</td>
<td>UHOR_10021</td>
<td>um05294</td>
<td>3.0E-14</td>
<td>26.1</td>
<td>61.1</td>
<td>0.16</td>
<td></td>
<td>conserved hypothetical Ustilaginaceae-specific protein *</td>
</tr>
</tbody>
</table>

* *
<table>
<thead>
<tr>
<th>No.</th>
<th>Gene ID</th>
<th>Protein ID</th>
<th>E-value</th>
<th>Bit Score</th>
<th>Expect</th>
<th>Similarity</th>
<th>E-value</th>
<th>Bit Score</th>
<th>Expect</th>
<th>Similarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>UHOR_10022</td>
<td>um12302</td>
<td>8</td>
<td>1.9E-16</td>
<td>30.5</td>
<td>65.2</td>
<td>0.18</td>
<td>conserved hypothetical Ustilaginaceae-specific protein, UhAvr1*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>UHOR_13899</td>
<td>no hit in Um</td>
<td>7</td>
<td>2.7E-15</td>
<td>29.5</td>
<td>60.4</td>
<td>0.17</td>
<td>hypothetical protein</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>UHOR_10023</td>
<td>um04172</td>
<td>0.0007</td>
<td>18.7</td>
<td>56</td>
<td>0.05</td>
<td>probable transposase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>UHOR_10024</td>
<td>um03280</td>
<td>0.0003</td>
<td>29.4</td>
<td>51</td>
<td>0.09</td>
<td>hypothetical protein</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>UHOR_13901</td>
<td>no hit in Um</td>
<td>0.008</td>
<td>27</td>
<td>57</td>
<td>0.05</td>
<td>probable transposase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>UHOR_10025</td>
<td>um06075</td>
<td>5</td>
<td>0</td>
<td>91.6</td>
<td>97.2</td>
<td>0.9</td>
<td>probable oligosaccharyltransferase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>UHOR_08123</td>
<td>um05293</td>
<td>0</td>
<td>63</td>
<td>87.3</td>
<td>0.49</td>
<td>hypothetical protein</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>UHOR_13903</td>
<td>no hit in Um</td>
<td>0</td>
<td>58.3</td>
<td>75.4</td>
<td>0.12</td>
<td>related to Gag-pol polyprotein</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>UHOR_13904</td>
<td>no hit in Um</td>
<td>1.1E-11</td>
<td>32.9</td>
<td>71.4</td>
<td>0.12</td>
<td>hypothetical protein</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>UHOR_10026</td>
<td>um04367</td>
<td>0.02</td>
<td>31.2</td>
<td>64.1</td>
<td>0.1</td>
<td>hypothetical protein</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>UHOR_10027</td>
<td>um10618</td>
<td>0</td>
<td>46.1</td>
<td>63</td>
<td>0.12</td>
<td>related to retrotransposon protein</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>UHOR_10028</td>
<td>um02565</td>
<td>23</td>
<td>5.9E-21</td>
<td>36.8</td>
<td>67.2</td>
<td>0.21</td>
<td>conserved hypothetical Ustilaginaceae-specific protein*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>UHOR_13907</td>
<td>no hit in Um</td>
<td>21</td>
<td>2.4E-10</td>
<td>25.6</td>
<td>60.6</td>
<td>0.13</td>
<td>conserved hypothetical Ustilaginaceae-specific protein*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>UHOR_10029</td>
<td>no hit in Um</td>
<td>22</td>
<td>8.1E-10</td>
<td>26.8</td>
<td>64.3</td>
<td>0.13</td>
<td>conserved hypothetical Ustilaginaceae-specific protein*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>UHOR_10030</td>
<td>um05074</td>
<td>23</td>
<td>2.0E-21</td>
<td>33.1</td>
<td>64.5</td>
<td>0.24</td>
<td>conserved hypothetical Ustilaginaceae-specific protein*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>UHOR_10031</td>
<td>um02565</td>
<td>22</td>
<td>4.4E-12</td>
<td>26.4</td>
<td>68.0</td>
<td>0.16</td>
<td>conserved hypothetical Ustilaginaceae-specific protein*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Accession</td>
<td>Gene ID</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--------------</td>
<td>---------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>UHOR_08134</td>
<td>um05312</td>
<td>24</td>
<td>2.3E-43</td>
<td>45.8</td>
<td>74.8</td>
<td>0.38</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>um05317</td>
<td>29</td>
<td>2.9E-14</td>
<td>25.7</td>
<td>60.3</td>
<td>0.16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>um10557</td>
<td>27</td>
<td>6.8E-11</td>
<td>28.6</td>
<td>59.7</td>
<td>0.14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>um05318</td>
<td>30</td>
<td>2.9E-10</td>
<td>26.8</td>
<td>58.5</td>
<td>0.13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>um05314</td>
<td>26</td>
<td>5.3E-09</td>
<td>25.2</td>
<td>63.1</td>
<td>0.12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>UHOR_10032</td>
<td>um04367</td>
<td>0</td>
<td>0</td>
<td>57.9</td>
<td>75.4</td>
<td>0.08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>UHOR_13915</td>
<td>no hit in Um</td>
<td>30</td>
<td>2.0E-08</td>
<td>58.3</td>
<td>83.3</td>
<td>0.28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>UHOR_13916</td>
<td>um05318</td>
<td>30</td>
<td>2.0E-08</td>
<td>58.3</td>
<td>83.3</td>
<td>0.28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>UHOR_10033</td>
<td>um05319</td>
<td>31</td>
<td>4.2E-13</td>
<td>36.7</td>
<td>65.1</td>
<td>0.28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>UHOR_08135</td>
<td>um10558</td>
<td>32</td>
<td>4.9E-30</td>
<td>93.2</td>
<td>96.8</td>
<td>0.93</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>um05320</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>UHOR_08136</td>
<td>um02237</td>
<td>0</td>
<td>26.7</td>
<td>53.9</td>
<td>0.13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>UHOR_08137</td>
<td>um10560</td>
<td>35</td>
<td>0</td>
<td>49.1</td>
<td>73.3</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>UHOR_08138</td>
<td>um10561</td>
<td>36</td>
<td>0</td>
<td>81.6</td>
<td>93.4</td>
<td>0.84</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>UHOR_08139</td>
<td>um03753</td>
<td>8.7E-19</td>
<td>23.4</td>
<td>55.7</td>
<td>0.13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>um03752</td>
<td>2.2E-14</td>
<td>25.2</td>
<td>52.7</td>
<td>0.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>UHOR_13921</td>
<td>no hit in Um</td>
<td>37</td>
<td>0</td>
<td>64.9</td>
<td>78.4</td>
<td>0.66</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>UHOR_13922</td>
<td>um05325</td>
<td>37</td>
<td>0</td>
<td>54.3</td>
<td>72</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>UHOR_13925</td>
<td>um05326</td>
<td>38</td>
<td>0</td>
<td>54.3</td>
<td>72</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Number corresponds to predicted genes in the figures
2. MIPS *U. hordei* strain Uh364 (*MAT-I*) Database gene ID number available at http://mips.helmholtzmuenchen.de/genre/proj/MUHDB/; color indicates homology / likely family members, and corresponds to Figure 3
4. Arbitrary number given to the corresponding *U. maydis* gene in the Figures
5. Reported expect value based on BLASTp [109]
percent identical amino acids over the length of the matching protein sequences
percent similar amino acids over the length of the matching protein sequences
SIMAP results of the best hit; SIMAP is a program that measures protein similarity based on identities of amino acids in homologous fragments multiplied by the length of the homologous region and divided by the protein length [63]
annotated function of *U. hordei* gene; predicted SSPs indicated with an asterisk

Table S2. Strains used in this work

<table>
<thead>
<tr>
<th>Strain ID</th>
<th>Relevant Genotype</th>
<th>Comment / Source or origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uh359</td>
<td>MAT-1 U4avr1</td>
<td>wild type, alias Uh4854-4, virulent on cv. Hannchen [38]</td>
</tr>
<tr>
<td>Uh362</td>
<td>MAT-2 U4avr1</td>
<td>wild type, alias Uh4854-10, virulent on cv. Hannchen [38]</td>
</tr>
<tr>
<td>Uh364</td>
<td>MAT-1 U4Avr1</td>
<td>wild type, alias Uh4857-4, avirulent on cv. Hannchen [38]</td>
</tr>
<tr>
<td>Uh365</td>
<td>MAT-2 U4Avr1</td>
<td>wild type, alias Uh4857-5, avirulent on cv. Hannchen [38]</td>
</tr>
<tr>
<td>Um324</td>
<td>a2b2</td>
<td>wild type; Um521 [110]</td>
</tr>
<tr>
<td>Uh951</td>
<td>Uh364 (MAT-1, ΔUHOR_08134); hyg<sup>R</sup></td>
<td>this work</td>
</tr>
<tr>
<td>Uh1041</td>
<td>Uh364 (MAT-1, Δ18A2); cbx<sup>R</sup></td>
<td>deletion of fragment 18A2 (see Figure 1); this work</td>
</tr>
<tr>
<td>Uh1046</td>
<td>Uh364 (MAT-1, Δ18A3); cbx<sup>R</sup></td>
<td>deletion of fragment 18A3 (see Figure 1); this work</td>
</tr>
<tr>
<td>Uh1051</td>
<td>Uh364 (MAT-1, 18A4); cbx<sup>R</sup></td>
<td>deletion of fragment 18A4 (see Figure 1); this work</td>
</tr>
<tr>
<td>Uh1116</td>
<td>MAT-2, Δ18A2 (31); cbx<sup>R</sup></td>
<td>progeny #31 (MAT-2) of cross Uh362xUh1041; this work</td>
</tr>
<tr>
<td>Uh1117</td>
<td>MAT-2, Δ18A2 (33); cbx<sup>R</sup></td>
<td>progeny #33 (MAT-2) of cross Uh362xUh1041; this work</td>
</tr>
<tr>
<td>Uh1118</td>
<td>MAT-2, Δ18A2 (35); cbx<sup>R</sup></td>
<td>progeny #35 (MAT-2) of cross Uh362xUh1041; this work</td>
</tr>
<tr>
<td>Uh1131</td>
<td>Uh364 (MAT-1, Δ18A2-b); cbx<sup>R</sup></td>
<td>deletion of fragment 18A2-b, clone 52 (see Figure 1); this work</td>
</tr>
<tr>
<td>Uh1137</td>
<td>Uh364 (MAT-1, Δ18A2-c); cbx<sup>R</sup></td>
<td>deletion of fragment 18A2-c, clone 19 (see Figure 1); this work</td>
</tr>
<tr>
<td>Uh1142</td>
<td>Uh364 (MAT-1, Δ18A2-c); cbx<sup>R</sup></td>
<td>deletion of fragment 18A2-c, clone 59 (see Figure 1); this work</td>
</tr>
<tr>
<td>Uh1149</td>
<td>Uh364 (MAT-1, Δ18A2-d); cbx<sup>R</sup></td>
<td>deletion of fragment 18A2-d, clone 1 (see Figure 1); this work</td>
</tr>
<tr>
<td>Uh1155</td>
<td>Uh364 (MAT-1, Δ18A2-d); cbx<sup>R</sup></td>
<td>deletion of fragment 18A2-d, clone 82 (see Figure 1); this work</td>
</tr>
<tr>
<td>Uh1166</td>
<td>Uh364 (MAT-1, Δ18A2-a); cbx<sup>R</sup></td>
<td>deletion of fragment 18A2-a, clone 76 (see Figure 1); this work</td>
</tr>
<tr>
<td>Uh1173</td>
<td>Uh364 (MAT-1, Δ18A2-a); cbx<sup>R</sup></td>
<td>deletion of fragment 18A2-a, clone 316 (see Figure 1); this work</td>
</tr>
<tr>
<td>Uh1189</td>
<td>Uh364 (MAT-1, Δ18A2-e); cbx<sup>R</sup></td>
<td>deletion of fragment 18A2-e, clone 64 (see Figure 1); this work</td>
</tr>
<tr>
<td>Uh1197</td>
<td>Uh364 (MAT-1, Δ18A2-e); cbx<sup>R</sup></td>
<td>deletion of fragment 18A2-e, clone 109 (see Figure 1); this work</td>
</tr>
<tr>
<td>Uh1205</td>
<td>Uh1041 [BAC1-6]; cbx<sup>R</sup> hyg<sup>R</sup></td>
<td>BAC clone pBAC1-6 (Figure 1A) randomly integrated; clone 2; this work</td>
</tr>
<tr>
<td>Uh1207</td>
<td>Uh1041 [BAC1-6]; cbx<sup>R</sup> hyg<sup>R</sup></td>
<td>BAC clone pBAC1-6 (Figure 1A) randomly integrated; clone 8; this work</td>
</tr>
<tr>
<td>Uh1250</td>
<td>Uh1041 [HSP70:UHOR_10021:HA]; cbx<sup>R</sup> zeo<sup>R</sup></td>
<td>complemented with randomly integrated effector UHOR_10021:C-terminal HA tag, expressed from constitutive HSP70 promoter, clone 3; this work</td>
</tr>
<tr>
<td>Uh1251</td>
<td>Uh1041 [HSP70:UHOR_10021:HA]; cbx<sup>R</sup> zeo<sup>R</sup></td>
<td>complemented with randomly integrated effector UHOR_10021:C-terminal HA tag, expressed from constitutive HSP70 promoter, clone 4; this work</td>
</tr>
<tr>
<td>Uh1253</td>
<td>Uh1041 [HSP70:UHOR_10021-SP:HA]; cbx<sup>R</sup> zeo<sup>R</sup></td>
<td>complemented with randomly integrated effector UHOR_10021:C-terminal HA tag, minus signal peptide, expressed from constitutive HSP70 promoter, clone 2; this work</td>
</tr>
<tr>
<td>Uh1254</td>
<td>Uh1041 [HSP70:UHOR_10021-SP:HA]; zeo<sup>R</sup></td>
<td>complemented with randomly integrated effector UHOR_10021:C-terminal HA tag, minus signal peptide, expressed from constitutive HSP70 promoter, clone 3; this work</td>
</tr>
<tr>
<td>Uh1255</td>
<td>Uh1041 [HSP70:U4avr1:HA]; cbx<sup>R</sup> zeo<sup>R</sup></td>
<td>complemented with randomly integrated effector UHOR_10022:C-terminal HA tag, expressed from constitutive HSP70 promoter, clone 1; this work</td>
</tr>
<tr>
<td>Uh1256</td>
<td>Uh1041 [HSP70:U4avr1:HA]; cbx<sup>R</sup> zeo<sup>R</sup></td>
<td>complemented with randomly integrated effector UHOR_10022:C-terminal HA tag, expressed from constitutive HSP70 promoter, clone 1; this work</td>
</tr>
<tr>
<td>Strain ID</td>
<td>Relevant Genotype</td>
<td>Comment / Source or origin</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>Uh1257</td>
<td>Uh1041 [HSP70:UhAvr1-SP:HA]; cbx<sup>R</sup> zeo<sup>R</sup></td>
<td>HA tag, expressed from constitutive HSP70 promoter, clone 4; this work</td>
</tr>
<tr>
<td>Uh1258</td>
<td>Uh1041 [HSP70:UhAvr1-SP:HA]; cbx<sup>R</sup> zeo<sup>R</sup></td>
<td>HA tag, minus signal peptide, expressed from constitutive HSP70 promoter, clone 4; this work</td>
</tr>
<tr>
<td>Uh1289</td>
<td>Uh364 (MAT-1, ΔUhAvr1); cbx<sup>R</sup></td>
<td>single UhAvr1 deletion, clone 37; this work</td>
</tr>
<tr>
<td>Uh1297</td>
<td>Uh364 (MAT-1, ΔUhAvr1); cbx<sup>R</sup></td>
<td>single UhAvr1 deletion, clone 106; this work</td>
</tr>
<tr>
<td>Uh1351</td>
<td>Uh364 (MAT-1, Avr1 [otef:gfp]); zeo<sup>R</sup></td>
<td>GFP expressed from strong constitutive Ustilago otef promoter; this work</td>
</tr>
<tr>
<td>Uh1352</td>
<td>Uh1289 [UhAvr1:gfp]; zeo<sup>R</sup></td>
<td>ΔUhAvr1, replacing deletion by UHOR_10022:GFP chimer, clone 2; this work</td>
</tr>
<tr>
<td>Uh1353</td>
<td>Uh1289 [UhAvr1:gfp]; zeo<sup>R</sup></td>
<td>ΔUhAvr1, replacing deletion by UHOR_10022:GFP chimer, clone 3; this work</td>
</tr>
<tr>
<td>Uh1354</td>
<td>Uh1289 [UhAvr1:gfp]; zeo<sup>R</sup></td>
<td>ΔUhAvr1, replacing deletion by UHOR_10022:GFP chimer, clone 4; this work</td>
</tr>
<tr>
<td>Uh1355</td>
<td>Uh1289 [UhAvr1:gfp]; zeo<sup>R</sup></td>
<td>ΔUhAvr1, randomly integrated effector UHOR_10022:GFP chimer driven from strong otef promoter, clone 1; this work</td>
</tr>
<tr>
<td>Uh1356</td>
<td>Uh1289 [otef:UhAvr1:gfp]; zeo<sup>R</sup> cbx<sup>R</sup></td>
<td>ΔUhAvr1, randomly integrated effector UHOR_10022:GFP chimer driven from strong otef promoter, clone 2; this work</td>
</tr>
<tr>
<td>Uh1357</td>
<td>Uh1289 [otef:UhAvr1:gfp]; zeo<sup>R</sup> cbx<sup>R</sup></td>
<td>ΔUhAvr1, randomly integrated effector UHOR_10022:GFP chimer driven from strong otef promoter, clone 3; this work</td>
</tr>
<tr>
<td>Uh1359</td>
<td>Uh1289 [otef:UhAvr1:gfp]; zeo<sup>R</sup> cbx<sup>R</sup></td>
<td>ΔUhAvr1, randomly integrated effector UHOR_10022:GFP chimer driven from strong otef promoter, clone 4; this work</td>
</tr>
<tr>
<td>Uh1360</td>
<td>Uh1289 [HSP70:UhAvr1:HA]; zeo<sup>R</sup> cbx<sup>R</sup></td>
<td>ΔUhAvr1, randomly integrated effector UHOR_10022:GFP chimer driven from strong HSP70 promoter, clone 1; this work</td>
</tr>
<tr>
<td>Uh1361</td>
<td>Uh1289 [HSP70: UhAvr1:HA]; zeo<sup>R</sup> cbx<sup>R</sup></td>
<td>ΔUhAvr1, randomly integrated effector UHOR_10022:GFP chimer driven from strong HSP70 promoter, clone 2; this work</td>
</tr>
<tr>
<td>Uh1362</td>
<td>Uh1289 [HSP70: UhAvr1:HA]; zeo<sup>R</sup> cbx<sup>R</sup></td>
<td>ΔUhAvr1, randomly integrated effector UHOR_10022:GFP chimer driven from strong HSP70 promoter, clone 3; this work</td>
</tr>
<tr>
<td>Uh1363</td>
<td>Uh1289 [HSP70: UhAvr1-SP:HA]; zeo<sup>R</sup> cbx<sup>R</sup></td>
<td>ΔUhAvr1, randomly integrated effector UHOR_10022:GFP chimer driven from strong HSP70 promoter, clone 4; this work</td>
</tr>
<tr>
<td>Uh1364</td>
<td>Uh1289 [HSP70: UhAvr1]1; zeo<sup>R</sup> cbx<sup>R</sup></td>
<td>ΔUhAvr1, randomly integrated wild type effector UHOR_10022 ORF, from strong HSP70 promoter, clone 1; this work</td>
</tr>
<tr>
<td>Uh1365</td>
<td>Uh1289 [HSP70: UhAvr1]4; zeo<sup>R</sup> cbx<sup>R</sup></td>
<td>ΔUhAvr1, randomly integrated wild type effector UHOR_10022 ORF, from strong HSP70 promoter, clone 2; this work</td>
</tr>
<tr>
<td>Uh1366</td>
<td>Uh1289 [HSP70: UhAvr1]9; zeo<sup>R</sup> cbx<sup>R</sup></td>
<td>ΔUhAvr1, randomly integrated wild type effector UHOR_10022 ORF, from strong HSP70 promoter, clone 3; this work</td>
</tr>
<tr>
<td>Uh1367</td>
<td>Uh1289 [HSP70: UhAvr1]9; zeo<sup>R</sup> cbx<sup>R</sup></td>
<td>ΔUhAvr1, randomly integrated complete wild type effector UHOR_10022 gene; transformant 1; this work</td>
</tr>
<tr>
<td>Uh1368</td>
<td>Uh1289 [complete UhAvr1 gene]1; zeo<sup>R</sup> cbx<sup>R</sup></td>
<td>ΔUhAvr1, randomly integrated complete wild type effector UHOR_10022 gene; transformant 2; this work</td>
</tr>
<tr>
<td>Strain ID</td>
<td>Relevant Genotype</td>
<td>Comment / Source or origin</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>Uh1374</td>
<td>Uh1289 [complete UhAvr1 gene]; zeo<sup>+</sup> cbx<sup>+</sup></td>
<td>ΔUhAvr1, randomly integrated complete wild type effector UHOR_10022 gene; transformant 3; this work</td>
</tr>
</tbody>
</table>

World-wide field isolates

<table>
<thead>
<tr>
<th>Strain ID</th>
<th>Relevant Genotype</th>
<th>Country/Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uh795</td>
<td>MAT-1 UhAvr1</td>
<td>unknown</td>
</tr>
<tr>
<td>Uh798</td>
<td>MAT-2 UhAvr1</td>
<td>unknown</td>
</tr>
<tr>
<td>Uh805</td>
<td>MAT-1 Uhavrl</td>
<td>Kenya</td>
</tr>
<tr>
<td>Uh811</td>
<td>MAT-1 Uhavrl</td>
<td>Ethiopia</td>
</tr>
<tr>
<td>Uh813</td>
<td>MAT-1 UhAvr1</td>
<td>Iran</td>
</tr>
<tr>
<td>Uh815</td>
<td>MAT-2 Uhavrl</td>
<td>Canary Island</td>
</tr>
<tr>
<td>Uh818</td>
<td>MAT-1 Uhavrl</td>
<td>Spain</td>
</tr>
<tr>
<td>Uh820</td>
<td>MAT-2 Uhavrl</td>
<td>Tunisia</td>
</tr>
<tr>
<td>Uh822</td>
<td>MAT-1 Uhavrl</td>
<td>Canada</td>
</tr>
<tr>
<td>Uh1273</td>
<td>MAT-1 UhAvr1</td>
<td>ICARDA Azerbaijan</td>
</tr>
<tr>
<td>Uh1278</td>
<td>MAT-1 Uhavrl</td>
<td>Hama Hamra, Syria</td>
</tr>
<tr>
<td>Uh1283</td>
<td>MAT-1 UhAvr1</td>
<td>Turkey</td>
</tr>
<tr>
<td>Uh2001-246</td>
<td>MAT-1 Uhavrl</td>
<td>Turkey</td>
</tr>
</tbody>
</table>

Uh, *U. hordei*; Um, *U. maydis*. All mutants were generated in the Uh364 background. R, resistant to the indicated antibiotic: hyg, hygromycin B; zeo, zeomycin / zeocin; cbx, carboxin; integrative complementing plasmids are in between square brackets. Δ, deletion mutant, indicating specific gene or region.

Table S3. Pathogenicity data of *U. hordei* controls, deletion mutants and complementing transformants.

<table>
<thead>
<tr>
<th>cross</th>
<th>Strains 1</th>
<th>barley cv</th>
<th># plants diseased 2</th>
<th>plants inoculated</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Uh359 (MAT-1, Uhavr1) x Uh362 (MAT-2, Uhavr1)</td>
<td>Odessa</td>
<td>6</td>
<td>36</td>
<td>17</td>
</tr>
<tr>
<td>2</td>
<td>Uh359 (MAT-1, Uhavr1) x Uh362 (MAT-2, Uhavr1)</td>
<td>Hannnchen</td>
<td>8</td>
<td>40</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>Uh362 (MAT-2, Uhavr1) x Uh364 (MAT-1, UhAvr1)</td>
<td>Odessa</td>
<td>22, 7</td>
<td>54, 32</td>
<td>41, 22</td>
</tr>
<tr>
<td>4</td>
<td>Uh362 (MAT-2, Uhavr1) x Uh364 (MAT-1, UhAvr1)</td>
<td>Hannnchen</td>
<td>0, 0</td>
<td>59, 32</td>
<td>0, 0</td>
</tr>
<tr>
<td>5</td>
<td>Uh362 (MAT-2, Uhavr1) x Uh1041 = Uh364 (MAT-1, Δ18A2)</td>
<td>Odessa</td>
<td>3</td>
<td>43</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>Uh362 (MAT-2, Uhavr1) x Uh1041 = Uh364 (MAT-1, Δ18A2)</td>
<td>Hannnchen</td>
<td>12</td>
<td>34</td>
<td>35</td>
</tr>
<tr>
<td>7</td>
<td>Uh362 (MAT-2, Uhavr1) x Uh1255 = Uh1041 (Δ18A2 [HSP70: UhAvr1:HA])</td>
<td>Odessa</td>
<td>7</td>
<td>79</td>
<td>9</td>
</tr>
<tr>
<td>8</td>
<td>Uh362 (MAT-2, Uhavr1) x Uh1255 = Uh1041 (Δ18A2 [HSP70: UhAvr1:HA])</td>
<td>Hannnchen</td>
<td>14</td>
<td>69</td>
<td>20</td>
</tr>
<tr>
<td>9</td>
<td>Uh362 (MAT-2, Uhavr1) x Uh1256 = Uh1041 (Δ18A2, [HSP70: UhAvr1:HA])</td>
<td>Odessa</td>
<td>18</td>
<td>74</td>
<td>24</td>
</tr>
<tr>
<td>10</td>
<td>Uh362 (MAT-2, Uhavr1) x Uh1256 = Uh1041 (Δ18A2, [HSP70: UhAvr1:HA])</td>
<td>Hannnchen</td>
<td>12</td>
<td>62</td>
<td>19</td>
</tr>
<tr>
<td>11</td>
<td>Uh362 (MAT-2, Uhavr1) x Uh1289 = Uh364 (MAT-1, ΔU1Avr1)</td>
<td>Odessa</td>
<td>25, 14</td>
<td>40, 33</td>
<td>63, 42</td>
</tr>
<tr>
<td>12</td>
<td>Uh362 (MAT-2, Uhavr1) x Uh1289 = Uh364 (MAT-1, ΔU1Avr1)</td>
<td>Hannnchen</td>
<td>26, 12</td>
<td>56, 33</td>
<td>46, 36</td>
</tr>
<tr>
<td>13</td>
<td>Uh362 (MAT-2, Uhavr1) x Uh1353 = Uh1289 (MAT-1, ΔU1Avr1 [UHOR_10022:GFP])</td>
<td>Odessa</td>
<td>6</td>
<td>55</td>
<td>11</td>
</tr>
<tr>
<td>14</td>
<td>Uh362 (MAT-2, Uhavr1) x Uh1353 = Uh1289 (MAT-1, ΔU1Avr1 [UHOR_10022:GFP])</td>
<td>Hannnchen</td>
<td>13</td>
<td>56</td>
<td>23</td>
</tr>
<tr>
<td>15</td>
<td>Uh362 (MAT-2, Uhavr1) x Uh1354 = Uh1289 (MAT-1, ΔU1Avr1 [UHOR_10022:GFP])</td>
<td>Odessa</td>
<td>24</td>
<td>41</td>
<td>59</td>
</tr>
<tr>
<td>16</td>
<td>Uh362 (MAT-2, Uhavr1) x Uh1354 = Uh1289 (MAT-1, ΔU1Avr1 [UHOR_10022:GFP])</td>
<td>Hannnchen</td>
<td>16</td>
<td>57</td>
<td>28</td>
</tr>
<tr>
<td>17</td>
<td>Uh362 (MAT-2, Uhavr1) x Uh1355 = Uh1289 (MAT-1, ΔU1Avr1 [UHOR_10022:GFP])</td>
<td>Odessa</td>
<td>13</td>
<td>40</td>
<td>33</td>
</tr>
<tr>
<td>18</td>
<td>Uh362 (MAT-2, Uhavr1) x Uh1355 = Uh1289 (MAT-1, ΔU1Avr1 [UHOR_10022:GFP])</td>
<td>Hannnchen</td>
<td>7</td>
<td>37</td>
<td>19</td>
</tr>
<tr>
<td>19</td>
<td>Uh362 (MAT-2, Uhavr1) x Uh1372 = Uh1289 (MAT-1, ΔU1Avr1 [complete UhAvr1 gene])</td>
<td>Odessa</td>
<td>6</td>
<td>32</td>
<td>19</td>
</tr>
<tr>
<td>20</td>
<td>Uh362 (MAT-2, Uhavr1) x Uh1372 = Uh1289 (MAT-1, ΔU1Avr1 [complete UhAvr1 gene])</td>
<td>Hannnchen</td>
<td>0</td>
<td>34</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>Uh362 (MAT-2, Uhavr1) x Uh1373 = Uh1289 (MAT-1, ΔU1Avr1 [complete UhAvr1 gene])</td>
<td>Odessa</td>
<td>14</td>
<td>35</td>
<td>40</td>
</tr>
<tr>
<td>22</td>
<td>Uh362 (MAT-2, Uhavr1) x Uh1373 = Uh1289 (MAT-1, ΔU1Avr1 [complete UhAvr1 gene])</td>
<td>Hannnchen</td>
<td>0</td>
<td>31</td>
<td>0</td>
</tr>
<tr>
<td>23</td>
<td>Uh362 (MAT-2, Uhavr1) x Uh1374 = Uh1289 (MAT-1, ΔU1Avr1 [complete UhAvr1 gene])</td>
<td>Odessa</td>
<td>9</td>
<td>34</td>
<td>26</td>
</tr>
<tr>
<td>24</td>
<td>Uh362 (MAT-2, Uhavr1) x Uh1374 = Uh1289 (MAT-1, ΔU1Avr1 [complete UhAvr1 gene])</td>
<td>Hannnchen</td>
<td>0</td>
<td>32</td>
<td>0</td>
</tr>
<tr>
<td>25</td>
<td>Uh362 (MAT-2, Uhavr1) x Uh1357 = Uh1289 (MAT-1, ΔU1Avr1 [otef:UhAvr1:GFP])</td>
<td>Odessa</td>
<td>9</td>
<td>33</td>
<td>27</td>
</tr>
<tr>
<td>26</td>
<td>Uh362 (MAT-2, Uhavr1) x Uh1357 = Uh1289 (MAT-1, ΔU1Avr1 [otef:UhAvr1:GFP])</td>
<td>Hannnchen</td>
<td>10</td>
<td>33</td>
<td>30</td>
</tr>
<tr>
<td>27</td>
<td>Uh362 (MAT-2, Uhavr1) x Uh1358 = Uh1289 (MAT-1, ΔU1Avr1 [otef:UhAvr1:GFP])</td>
<td>Odessa</td>
<td>7</td>
<td>32</td>
<td>22</td>
</tr>
<tr>
<td>28</td>
<td>Uh362 (MAT-2, Uhavr1) x Uh1358 = Uh1289 (MAT-1, ΔU1Avr1 [otef:UhAvr1:GFP])</td>
<td>Hannnchen</td>
<td>5</td>
<td>40</td>
<td>13</td>
</tr>
<tr>
<td>29</td>
<td>Uh362 (MAT-2, Uhavr1) x Uh1359 = Uh1289 (MAT-1, ΔU1Avr1 [otef:UhAvr1:GFP])</td>
<td>Odessa</td>
<td>13</td>
<td>33</td>
<td>39</td>
</tr>
<tr>
<td>30</td>
<td>Uh362 (MAT-2, Uhavr1) x Uh1359 = Uh1289 (MAT-1, ΔU1Avr1 [otef:UhAvr1:GFP])</td>
<td>Hannnchen</td>
<td>17</td>
<td>39</td>
<td>44</td>
</tr>
<tr>
<td>31</td>
<td>Uh362 (MAT-2, Uhavr1) x Uh1361 = Uh1289 (MAT-1, ΔU1Avr1 [HSP70:UhAvr1:HA])</td>
<td>Odessa</td>
<td>14, 16</td>
<td>31, 32</td>
<td>45, 50</td>
</tr>
<tr>
<td>32</td>
<td>Uh362 (MAT-2, Uhavr1) x Uh1361 = Uh1289 (MAT-1, ΔU1Avr1 [HSP70:UhAvr1:HA])</td>
<td>Hannnchen</td>
<td>5, 15</td>
<td>33, 36</td>
<td>15, 42</td>
</tr>
<tr>
<td>17</td>
<td>Uh362 (MAT-2, Uhavr1) x Uh1362 = Uh1289 (MAT-1, ΔUhAvr1 [HSP70:UhAvr1:HA])</td>
<td>Odessa</td>
<td>2, 13</td>
<td>29, 31</td>
<td>7, 42</td>
</tr>
<tr>
<td>17</td>
<td>Uh362 (MAT-2, Uhavr1) x Uh1362 = Uh1289 (MAT-1, ΔUhAvr1 [HSP70: UhAvr1:HA])</td>
<td>Hannchen</td>
<td>1, 5</td>
<td>33, 35</td>
<td>3, 14</td>
</tr>
<tr>
<td>18</td>
<td>Uh362 (MAT-2, Uhavr1) x Uh1363 = Uh1289 (MAT-1, ΔUhAvr1 [HSP70:UhAvr1-SP:HA])</td>
<td>Odessa</td>
<td>12</td>
<td>28</td>
<td>43</td>
</tr>
<tr>
<td>18</td>
<td>Uh362 (MAT-2, Uhavr1) x Uh1363 = Uh1289 (MAT-1, ΔUhAvr1 [HSP70: UhAvr1-SP:HA])</td>
<td>Hannchen</td>
<td>8</td>
<td>31</td>
<td>26</td>
</tr>
<tr>
<td>19</td>
<td>Uh362 (MAT-2, Uhavr1) x Uh1369 = Uh1289 (MAT-1, ΔUhAvr1 [HSP70:UhAvr1])</td>
<td>Odessa</td>
<td>11</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>19</td>
<td>Uh362 (MAT-2, Uhavr1) x Uh1369 = Uh1289 (MAT-1, ΔUhAvr1 [HSP70: UhAvr1])</td>
<td>Hannchen</td>
<td>13</td>
<td>33</td>
<td>39</td>
</tr>
<tr>
<td>20</td>
<td>Uh362 (MAT-2, Uhavr1) x Uh1370 = Uh1289 (MAT-1, ΔUhAvr1 [HSP70: UhAvr1])</td>
<td>Odessa</td>
<td>11</td>
<td>36</td>
<td>31</td>
</tr>
<tr>
<td>20</td>
<td>Uh362 (MAT-2, Uhavr1) x Uh1370 = Uh1289 (MAT-1, ΔUhAvr1 [HSP70: UhAvr1])</td>
<td>Hannchen</td>
<td>12</td>
<td>35</td>
<td>34</td>
</tr>
<tr>
<td>21</td>
<td>Uh362 (MAT-2, Uhavr1) x Uh1371 = Uh1289 (MAT-1, ΔUhAvr1 [HSP70: UhAvr1])</td>
<td>Odessa</td>
<td>7</td>
<td>30</td>
<td>23</td>
</tr>
<tr>
<td>21</td>
<td>Uh362 (MAT-2, Uhavr1) x Uh1371 = Uh1289 (MAT-1, ΔUhAvr1 [HSP70: UhAvr1])</td>
<td>Hannchen</td>
<td>12</td>
<td>31</td>
<td>33</td>
</tr>
</tbody>
</table>

1 For descriptions of strains and deletion mutants, see Table S2. Complementing plasmid constructs are given between square brackets, expressing the corresponding gene chimer (either linked to GFP or the HA epitope tag) from either the otef or U. maydis HSP70 promoter. –SP indicates the effector gene is lacking the predicted signal peptide sequence.

2 Pathogenicity tests are variable; ratings for the same cross should be compared with respect to infection on universal susceptible ‘Odessa’
<table>
<thead>
<tr>
<th>#</th>
<th>Name of the primer</th>
<th>Sequence</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>661</td>
<td>Uh5311R2</td>
<td>GCATTCGGCCTGATACCAAC</td>
<td>Sequencing of UHOR_08132</td>
</tr>
<tr>
<td>727</td>
<td>Uh05318homo_r</td>
<td>GGCACATAGTTCAATTCAAAGCTGGAGGTATG</td>
<td>Sequencing of UHOR_10033</td>
</tr>
<tr>
<td>728</td>
<td>Uh05294plus_f</td>
<td>GGAACCTGTGCCTGCTTGTAGTG</td>
<td>Sequencing of UHOR_10021</td>
</tr>
<tr>
<td>730</td>
<td>Uh05306plus_f</td>
<td>ATAGCCCTCCCTCATGGTGT</td>
<td>Sequencing of UHOR_08128</td>
</tr>
<tr>
<td>731</td>
<td>Uh05306plus_r</td>
<td>TCGCAGTGCCCTTCATATTC</td>
<td>Sequencing of UHOR_08128</td>
</tr>
<tr>
<td>736</td>
<td>Uh05311aPlus_f</td>
<td>GCTTTTCATCAGAGCCCATACCT</td>
<td>Sequencing of UHOR_08130</td>
</tr>
<tr>
<td>737</td>
<td>Uh05311aPlus_r</td>
<td>TGGCTTGGTTTACAGAGTGCAA</td>
<td>Sequencing of UHOR_08130</td>
</tr>
<tr>
<td>966</td>
<td>5319 plus_r</td>
<td>TCTCCCTTCTCGTCAACCT</td>
<td>Sequencing of UHOR_10033</td>
</tr>
<tr>
<td>1012</td>
<td>UHOR_08134 nested_f</td>
<td>TGAAGGCAGGCATGTCAAGGAAGCGAG</td>
<td>To generate deletion construct</td>
</tr>
<tr>
<td>1035</td>
<td>UHOR_08134 5′-flank_f</td>
<td>GGTACCGCATCAGCCTCAAC</td>
<td>5F of deletion construct</td>
</tr>
<tr>
<td>1038</td>
<td>Hyg- UHOR_08134 5′-flank</td>
<td>ATATCCCTTTAAAAACTCCATTCCACCCCTGTAGACAGATGTACCTTCAT</td>
<td>5F of deletion construct</td>
</tr>
<tr>
<td>1221</td>
<td>Hyg- UHOR_08134 3′-flank</td>
<td>ACTTTATTGTCATAAGTTTAGATCTATTTTGACTCTGTGACCATTGGAG</td>
<td>3F of deletion construct</td>
</tr>
<tr>
<td>1222</td>
<td>UHOR_08134 3′-flank_r</td>
<td>CCGATACCCAGACATAGCTG</td>
<td>3F of deletion construct</td>
</tr>
<tr>
<td>1223</td>
<td>UHOR_08134 nested_r</td>
<td>GTGCAATGGTGTTGAGGTC</td>
<td>To generate deletion construct</td>
</tr>
<tr>
<td>1152</td>
<td>UH_08134_Fw</td>
<td>CACCATAGAGGTACATCTGTCTAC</td>
<td>Sequencing of UHOR_08134</td>
</tr>
<tr>
<td>1154</td>
<td>UH_08134_Rev</td>
<td>GGCCTGGAATGGTCAGGG</td>
<td>Sequencing of UHOR_08134</td>
</tr>
<tr>
<td>1244</td>
<td>UH_13897_Fw</td>
<td>CACCATGCTTACTCAACCGGCAAC</td>
<td>Cloning of UHOR_10021</td>
</tr>
<tr>
<td>1245</td>
<td>UH_13897-SP_Fw</td>
<td>CACCATGMCATACCCCGGTCGAGCTAC</td>
<td>Cloning of UHOR_10021</td>
</tr>
<tr>
<td>1246</td>
<td>UH_13897_Rev</td>
<td>CATTCTGTCAACCGTCAAAA</td>
<td>Cloning and sequencing of UHOR_10021</td>
</tr>
<tr>
<td>1247</td>
<td>UH_10022_Fw</td>
<td>CACCATGCAGTCATTCCCTTCC</td>
<td>Cloning and sequencing of UHOR_10022</td>
</tr>
<tr>
<td>1248</td>
<td>UH_10022-SP_Fw</td>
<td>CACCATGCTGCTGGCAAAAAGCTTCTTC</td>
<td>Cloning of UHOR_10022</td>
</tr>
<tr>
<td>1249</td>
<td>UH_10022_Rev</td>
<td>TCGGGCAGAGTGCGAGCGAG</td>
<td>Cloning and sequencing of UHOR_10022</td>
</tr>
<tr>
<td>1253</td>
<td>UH_08132_Fw</td>
<td>CACCATGGCCACAACATCACTGTAC</td>
<td>Sequencing of UHOR_08132</td>
</tr>
<tr>
<td>1256</td>
<td>UH_08128_Fw</td>
<td>CACCATGCATTCTTTATTTATTCTCAGCC</td>
<td>Sequencing of UHOR_08128</td>
</tr>
<tr>
<td>1258</td>
<td>UH_08128_Rev</td>
<td>AGAAAAGTGCGGCACTGATGC</td>
<td>Sequencing of UHOR_08128</td>
</tr>
<tr>
<td>1261</td>
<td>UH_08127_Rev</td>
<td>TCCGTGGCCTCTCAACAGCAAG</td>
<td>Sequencing of UHOR_08127</td>
</tr>
<tr>
<td>1265</td>
<td>UH_08139_Fw</td>
<td>CACCATGTCCGGAATCCGGCTTTTGT</td>
<td>Sequencing of UHOR_08139</td>
</tr>
<tr>
<td>#</td>
<td>Name of the primer</td>
<td>Sequence</td>
<td>Purpose</td>
</tr>
<tr>
<td>-----</td>
<td>--------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>1267</td>
<td>UH_08139_Rev</td>
<td>TCCAGGCAATCTGATCAGGC</td>
<td>Sequencing of UHOR_08139</td>
</tr>
<tr>
<td>1272</td>
<td>UH08127-plusL</td>
<td>GCGAGACGACGACGTGAAACTAC</td>
<td>Sequencing of UHOR_08127</td>
</tr>
<tr>
<td>1273</td>
<td>UH08127-plusR</td>
<td>GTTCAAGGCCCTATATCCCTCT</td>
<td>Sequencing of UHOR_08127</td>
</tr>
<tr>
<td>1277</td>
<td>Uh10024-plusL</td>
<td>TGAGATCTGCATAGAGCTGTATTC</td>
<td>Sequencing of UHOR_10024</td>
</tr>
<tr>
<td>1278</td>
<td>Uh10024-plusR</td>
<td>GCACTTCTGGATGTCAAGTGT</td>
<td>Sequencing of UHOR_10024</td>
</tr>
<tr>
<td>1281</td>
<td>UH08132-plus-L</td>
<td>CGCTATGGAAGCCTTCAATTT</td>
<td>Sequencing of UHOR_08132</td>
</tr>
<tr>
<td>1282</td>
<td>Uh10033-plus-L</td>
<td>GGTCAAGTGCACCTCCACAG</td>
<td>Sequencing of UHOR_13916</td>
</tr>
<tr>
<td>1283</td>
<td>Uh10033-plus-R</td>
<td>GTCCCTTGGTCATTCCTCAT</td>
<td>Sequencing of UHOR_13916</td>
</tr>
<tr>
<td>1284</td>
<td>C19-A1-5L-1Sce-1F</td>
<td>AAAATTAGGGAATAACAGGGTTAATCGACAGATCTCGAGGAAACC</td>
<td>5F of deletion construct C18A2</td>
</tr>
<tr>
<td>1285</td>
<td>C19-A1-5R-flank-attB1</td>
<td>GGGGACATGTTGTCACAAAAAAGCAGGCTATTGAAATTGTGTTTGCCACACCTG</td>
<td>5F deletion construct C18A2</td>
</tr>
<tr>
<td>1286</td>
<td>C19-A1-ko-5 FlankL</td>
<td>TCACTTCAGGAGGTGATCAAGA</td>
<td>Confirmation of deletion mutant C18A2</td>
</tr>
<tr>
<td>1289</td>
<td>C19-A2-3L-attB2</td>
<td>GGGGACACTTTTGTAACAAAGAAGCTGGGTAGGAGAGAAGAGCAGAGCT</td>
<td>3F of deletion construct C18A2</td>
</tr>
<tr>
<td>1290</td>
<td>C19-A2-3R-1Sce-1R</td>
<td>AAAATTACCTCGTTATCCCTATTGTGGTTCACCTGCTGCACTTC</td>
<td>3F of deletion construct C18A2</td>
</tr>
<tr>
<td>1291</td>
<td>C19-A2-ko-3 FlankR</td>
<td>TCCCTGTGCGGTCAGCTTCTACT</td>
<td>Confirmation of deletion mutant C18A2</td>
</tr>
<tr>
<td>1292</td>
<td>C19-A3-5L-1sce-1F</td>
<td>AAAATAGGGAATAACAGGGTTAATCGACAGATCTCGAGGAAAGG</td>
<td>5F deletion construct C18A3</td>
</tr>
<tr>
<td>1293</td>
<td>C19-A3-5R-attB1</td>
<td>GGGGACAAGTTGTCACAAAAAAGCAGGCTATTGAGGATCGAAGAT</td>
<td>5F deletion construct C18A3</td>
</tr>
<tr>
<td>1294</td>
<td>C19-A3-ko-5 FlankL</td>
<td>TTGTGTTGCTTCTTCTCTGTGT</td>
<td>Confirmation of deletion mutant C18A2-A</td>
</tr>
<tr>
<td>1295</td>
<td>C19-A4-5L-1Sce-1F</td>
<td>AAAATAGGGAATAACAGGGTTAATCGACAGATCTCGAGGAAAGG</td>
<td>3F of deletion construct C18A3</td>
</tr>
<tr>
<td>1296</td>
<td>C19-A4-5R-attB1</td>
<td>GGGGACAAGTTGTCACAAAAAAGCAGGCTATTGAGGATCGAAGAT</td>
<td>3F of deletion construct C18A3</td>
</tr>
<tr>
<td>1297</td>
<td>C19-A4-ko-5 FlankL</td>
<td>AGCTTGCACTGTTCTCATCTC</td>
<td>Confirmation of deletion mutant C18A5</td>
</tr>
<tr>
<td>1298</td>
<td>C19-A4-3L attB2</td>
<td>GGGGACACTTTTGTAACAAAGAAGCTGGGTACGTAGGACCGCTGAGGACT</td>
<td>5F deletion construct C18A4</td>
</tr>
<tr>
<td>1299</td>
<td>C19-A4-3R-1Sce-1-R</td>
<td>AAAATTACCTCGTTATCCCTATTGTGGATCGACGCTGCTGCACTCG</td>
<td>5F deletion construct C18A4</td>
</tr>
<tr>
<td>1428</td>
<td>C19A2-A-3F-attB2-L</td>
<td>GGGGACACTTTTGTAACAAAGAAGCTGGGTACGTAGGACCGCTGCTGCACTCG</td>
<td>3F deletion construct C18A4</td>
</tr>
<tr>
<td>1429</td>
<td>C19A2-A-3F-1sce1R-R</td>
<td>AAAATTACCTCGTTATCCCTATTGTGGATCGACGCTGCTGCACTCG</td>
<td>3F deletion construct C18A4</td>
</tr>
<tr>
<td>1430</td>
<td>C19A2-b-5F-1sce1F-L</td>
<td>AAAATAGGGAATAACAGGGTTAATCGACAGATCTCGAGGAGT</td>
<td>5F deletion construct C18A-B</td>
</tr>
<tr>
<td>1431</td>
<td>C19A2-b-5F-attB1-R</td>
<td>GGGGACAAGTTGTCACAAAAAAGCAGGCTATTGAGGATCGAAGAT</td>
<td>5F deletion construct C18A-B</td>
</tr>
<tr>
<td>1432</td>
<td>C19A2-b-3F-attB2-L</td>
<td>GGGGACACTTTTGTAACAAAGAAGCTGGGTACGTAGGACCGCTGAGGACT</td>
<td>3F deletion construct C18A-B</td>
</tr>
<tr>
<td>1433</td>
<td>C19A2-b-3F-1Sce-R-R</td>
<td>AAAATTACCTCGTTATCCCTATTGTGGATCGACGCTGCTGCACTCG</td>
<td>3F deletion construct C18A-B</td>
</tr>
<tr>
<td>1434</td>
<td>C19A2-e-5F-1sce1F-L</td>
<td>AAAATAGGGAATAACAGGGTTAATCGACAGATCTCGAGGAGT</td>
<td>5F deletion construct C18A-C</td>
</tr>
<tr>
<td>1435</td>
<td>C19A2-c-5F-attB1-R</td>
<td>GGGGACAAGTTGTCACAAAAAAGCAGGCTATTGAGGATCGAAGAT</td>
<td>5F deletion construct C18A-C</td>
</tr>
<tr>
<td>#</td>
<td>Name of the primer</td>
<td>Sequence</td>
<td>Purpose</td>
</tr>
<tr>
<td>-----</td>
<td>-------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>1436</td>
<td>C19A2-c-3F-attB2-L</td>
<td>GGGGACCACTTTGTACAAGAAGCTGGGTAATTAGCCTAGTCCCGCTCT</td>
<td>3F deletion construct C18A-C</td>
</tr>
<tr>
<td>1437</td>
<td>C19A2-c-3F-1SceR-R</td>
<td>AAAATTACCCCGTTATCCCCCCATAGAAGAGCAGGGCTTTCA</td>
<td>3F deletion construct C18A-C</td>
</tr>
<tr>
<td>1438</td>
<td>C19A2-d-5F-1sce1F-L</td>
<td>AAAATAGGGATAAACAGGGGATATATTCATCTTCGCCATATTTC</td>
<td>3F deletion construct C18A-C</td>
</tr>
<tr>
<td>1439</td>
<td>C19A2-d-5F-1sce1R</td>
<td>GGGGACCAGTTTGTACAAAAAAGCGAGGCTATTTAGAAGCTCCCTCCTCGACTAGA</td>
<td>5F deletion construct C18A-D</td>
</tr>
<tr>
<td>1440</td>
<td>C19A2-d-3F-attB2-L</td>
<td>GGGACACCTTTGTACAAAAAAGCTGGGTAATTACATCACTAGGCTGAGGTGGA</td>
<td>3F deletion construct C18A-D</td>
</tr>
<tr>
<td>1441</td>
<td>C19A2-d-3F-1SceR-R</td>
<td>AAAATTACCCCGTTATCCCCCCATAGAAGAGCAGGGCTTTCA</td>
<td>3F deletion construct C18A-D</td>
</tr>
<tr>
<td>1442</td>
<td>C19A2-e-3F-attB2-L</td>
<td>GGGGACACCTTTGTACAAAAAAGCTGGGTAATTACATCACTAGGCTGAGGTGGA</td>
<td>3F deletion construct C18A-E</td>
</tr>
<tr>
<td>1442</td>
<td>C19A2-e-3F-1SceR-R</td>
<td>AAAATTACCCCGTTATCCCCCCATAGAAGAGCAGGGCTTTCA</td>
<td>3F deletion construct C18A-E</td>
</tr>
<tr>
<td>1506</td>
<td>C19A2-A-KO-3F</td>
<td>TTACAATGCAGCAACCGAG</td>
<td>Confirmation of deletion mutant C18A2-A</td>
</tr>
<tr>
<td>1507</td>
<td>C19A2-B-KO-5F</td>
<td>GCATATGCTTCTTCGCAATT</td>
<td>Confirmation of deletion mutant C18A2-B</td>
</tr>
<tr>
<td>1508</td>
<td>C19A2-D-KO-3F</td>
<td>TGTCATACAGCCCCAGATCA</td>
<td>Confirmation of deletion mutant C18A2-D</td>
</tr>
<tr>
<td>1511</td>
<td>Uh13899-L</td>
<td>CTGTTGACAGGACGACAGAG</td>
<td>For PCR amplification</td>
</tr>
<tr>
<td>1512</td>
<td>VirC17R1</td>
<td>CTGCAGGTCGACTCTAGAG</td>
<td>For PCR of transposable element</td>
</tr>
<tr>
<td>1521</td>
<td>C19A2-E-k0-3F</td>
<td>TGATGCTCATGCTGATTCA</td>
<td>Confirmation of deletion mutant C18A2-D</td>
</tr>
<tr>
<td>1514</td>
<td>Uh10022-5F-attBI</td>
<td>GGGGACAAGTTTGTACAAAAAAGCGAGGCTATTTAGAAGCTGGGTCAGTTTATC</td>
<td>5F deletion construct UHOR_10022</td>
</tr>
<tr>
<td>1515</td>
<td>Uh10022F</td>
<td>CACCGTGACCATGAGATTCGTCT</td>
<td>for RNAi</td>
</tr>
<tr>
<td>1516</td>
<td>Uh10026F</td>
<td>TGTCCGTGTGTGGTCTTCCC</td>
<td>For PCR amplification</td>
</tr>
<tr>
<td>1517</td>
<td>Uh10027R</td>
<td>TGATCAACACACCTAGGTTGCT</td>
<td>For PCR amplification</td>
</tr>
<tr>
<td>1518</td>
<td>Uh1028F</td>
<td>CCAGTACCGCTGGAAGTCA</td>
<td>For PCR amplification</td>
</tr>
<tr>
<td>1519</td>
<td>Uh1028R</td>
<td>TACAGCTTTGCCTCTGAGGH</td>
<td>For PCR amplification</td>
</tr>
<tr>
<td>1520</td>
<td>13901F</td>
<td>GAATCTCGAGTGTCCAA</td>
<td>For PCR amplification</td>
</tr>
<tr>
<td>1521</td>
<td>10030R</td>
<td>GCAAGAGGAGGAGCAACAGTC</td>
<td>For PCR amplification</td>
</tr>
<tr>
<td>1522</td>
<td>10021F1</td>
<td>CGATGTACGGGGCTTCGAAG</td>
<td>For qPCR and PCR amplification</td>
</tr>
<tr>
<td>1523</td>
<td>10022 qPCR-L</td>
<td>GGTGGACACCTGTCCTAGA</td>
<td>Flanking primer for UhAvr1</td>
</tr>
<tr>
<td>1524</td>
<td>Avr1249NEST</td>
<td>CAGGGCAGTTCAATATCAAG</td>
<td>Nested primer for UhAvr1</td>
</tr>
<tr>
<td>1525</td>
<td>Avr1689NEST</td>
<td>AGATAAAGTTAAGAAACT</td>
<td>Nested primer for UhAvr1</td>
</tr>
<tr>
<td>1526</td>
<td>UH07772-5PRIME-B</td>
<td>AACTCTGTGCGGACACGAC</td>
<td>Flanking primer for eIF-B2</td>
</tr>
<tr>
<td>1527</td>
<td>UH07772-3PRIME-B</td>
<td>ATACCTGTGACCTCTTCTG</td>
<td>Flanking primer for eIF-B2</td>
</tr>
<tr>
<td>1528</td>
<td>Avr1804NEST</td>
<td>CACGCAAATGACTTTAAAG</td>
<td>Nested primer for eIF-B2</td>
</tr>
<tr>
<td>1529</td>
<td>Avr1805NEST</td>
<td>CTGCCGCTTCCTCACAAG</td>
<td>Nested primer for eIF-B2</td>
</tr>
<tr>
<td>#</td>
<td>Name of the primer</td>
<td>Sequence</td>
<td>Purpose</td>
</tr>
<tr>
<td>-----</td>
<td>-------------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>1815</td>
<td>10022SP-ATG-rev</td>
<td>GGAAAAGGAAAAACGATCGCAT</td>
<td>For (inverse) PCR amplification</td>
</tr>
<tr>
<td>1816</td>
<td>10022SP-5start-fw</td>
<td>CTCTGCATATGGGTCATCGGCG</td>
<td>For inverse PCR amplification</td>
</tr>
<tr>
<td>1890</td>
<td>Uh362C17R2</td>
<td>GCCTCCCCAATGGGTTCG</td>
<td>For PCR of transposable element</td>
</tr>
<tr>
<td>1891</td>
<td>Uh10026-L58790</td>
<td>AATGGGACTACAGAGTACAAGG</td>
<td>For PCR of transposable element</td>
</tr>
<tr>
<td>1904</td>
<td>UhAvr1gene_fw</td>
<td>CGTGGGATCTCAGACTGAACACCCGTTGCACTGC</td>
<td>to clone complete wt UhAvr1 gene in pUBle3 – BamHI sites</td>
</tr>
<tr>
<td>1905</td>
<td>UhAvr1gene-rev</td>
<td>CGTCGGATCCATGGTCAAGATCTTGGCAGCAGCTCG</td>
<td>to clone complete wt UhAvr1 gene in pUBle3 – BamHI sites</td>
</tr>
</tbody>
</table>

#, primer inventory number. F, forward; R, reverse. 3F and 5F indicates primers were used for the amplification of 3’- and 5’-ends of deleted regions. The I-SceI recognition sequence is in bold type and underlined, while only bold type represents the attB1 and attB2 sequences on the primers used for the deletion constructs. The tetranucleotide CACC in bold type indicates the sequence used for directional cloning in the pENTR/D™ Gateway plasmid (Invitrogen).
Table S5. Annotated genes in the region of the *U. maydis* 19A cluster.

<table>
<thead>
<tr>
<th>Number</th>
<th>U. maydis MIPS ID</th>
<th>U. maydis, alternate MIPS ID</th>
<th>Coordinates on chrom 19</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>um10705</td>
<td></td>
<td>131692 132810</td>
<td>cyclin-dependent kinase 1</td>
</tr>
<tr>
<td>2</td>
<td>um05290</td>
<td></td>
<td>134828 133131</td>
<td>putative protein</td>
</tr>
<tr>
<td>3</td>
<td>um05291</td>
<td>umd191-470</td>
<td>136367 135366</td>
<td>conserved hypothetical protein</td>
</tr>
<tr>
<td>4</td>
<td>um05292</td>
<td></td>
<td>137169 141062</td>
<td>related to DigA protein</td>
</tr>
<tr>
<td>5</td>
<td>um05293</td>
<td></td>
<td>142124 144523</td>
<td>probable oligosaccharyltransferase</td>
</tr>
<tr>
<td>6</td>
<td>um05294</td>
<td></td>
<td>145921 146535</td>
<td>conserved hypothetical Ustilago-specific protein *</td>
</tr>
<tr>
<td>7</td>
<td>um05295</td>
<td></td>
<td>147006 147635</td>
<td>conserved hypothetical Ustilago-specific protein *</td>
</tr>
<tr>
<td>8</td>
<td>um12302 um05296</td>
<td></td>
<td>148362 148916</td>
<td>conserved hypothetical Ustilago-specific protein *</td>
</tr>
<tr>
<td>9</td>
<td>um10553 um05297</td>
<td></td>
<td>150051 150695</td>
<td>conserved hypothetical Ustilago-specific protein *</td>
</tr>
<tr>
<td>10</td>
<td>um10554 um05298</td>
<td></td>
<td>151334 151915</td>
<td>conserved hypothetical Ustilago-specific protein *</td>
</tr>
<tr>
<td>11</td>
<td>um05299</td>
<td></td>
<td>153386 154090</td>
<td>conserved hypothetical Ustilago-specific protein *</td>
</tr>
<tr>
<td>12</td>
<td>um05300</td>
<td></td>
<td>154615 155271</td>
<td>conserved hypothetical Ustilago-specific protein *</td>
</tr>
<tr>
<td>13</td>
<td>um05301</td>
<td></td>
<td>156973 157728</td>
<td>conserved hypothetical Ustilago-specific protein *</td>
</tr>
<tr>
<td>14</td>
<td>um05302</td>
<td></td>
<td>159396 160019</td>
<td>hypothetical protein *</td>
</tr>
<tr>
<td>15</td>
<td>um05303</td>
<td></td>
<td>160415 160996</td>
<td>hypothetical protein *</td>
</tr>
<tr>
<td>16</td>
<td>um10555 um05304</td>
<td></td>
<td>161948 162550</td>
<td>conserved hypothetical protein *</td>
</tr>
<tr>
<td>17</td>
<td>um05305</td>
<td></td>
<td>164040 164723</td>
<td>conserved hypothetical Ustilago-specific protein *</td>
</tr>
<tr>
<td>18</td>
<td>um05306</td>
<td></td>
<td>165279 166142</td>
<td>conserved hypothetical Ustilago-specific protein *</td>
</tr>
<tr>
<td>19</td>
<td>um10556 um05307</td>
<td></td>
<td>167168 166284</td>
<td>hypothetical protein *</td>
</tr>
<tr>
<td>20</td>
<td>um05308</td>
<td></td>
<td>169924 170652</td>
<td>hypothetical protein *</td>
</tr>
<tr>
<td>21</td>
<td>um05309</td>
<td></td>
<td>173231 173818</td>
<td>conserved hypothetical Ustilago-specific protein *</td>
</tr>
<tr>
<td>Number</td>
<td>MIPS ID</td>
<td>Start</td>
<td>End</td>
<td>Function</td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
<td>-------</td>
<td>-----</td>
<td>----------</td>
</tr>
<tr>
<td>22</td>
<td>um05310</td>
<td>174557</td>
<td>175144</td>
<td>conserved hypothetical Ustilago-specific protein *</td>
</tr>
<tr>
<td>23</td>
<td>um05311</td>
<td>176039</td>
<td>176701</td>
<td>conserved hypothetical Ustilago-specific protein *</td>
</tr>
<tr>
<td>24</td>
<td>um05312</td>
<td>177055</td>
<td>177603</td>
<td>conserved hypothetical Ustilago-specific protein *</td>
</tr>
<tr>
<td>25</td>
<td>um05313</td>
<td>178662</td>
<td>180186</td>
<td>hypothetical protein</td>
</tr>
<tr>
<td>26</td>
<td>um05314</td>
<td>181718</td>
<td>182314</td>
<td>conserved hypothetical Ustilago-specific protein *</td>
</tr>
<tr>
<td>27</td>
<td>um10557 um05315</td>
<td>183874</td>
<td>184416</td>
<td>conserved hypothetical Ustilago-specific protein *</td>
</tr>
<tr>
<td>28</td>
<td>um05316 umd191-730</td>
<td>184994</td>
<td>185813</td>
<td>related to transposase, pseudogene</td>
</tr>
<tr>
<td>29</td>
<td>um05317</td>
<td>186566</td>
<td>187102</td>
<td>conserved hypothetical Ustilago-specific protein *</td>
</tr>
<tr>
<td>30</td>
<td>um05318</td>
<td>187537</td>
<td>188088</td>
<td>hypothetical protein *</td>
</tr>
<tr>
<td>31</td>
<td>um05319</td>
<td>188591</td>
<td>189148</td>
<td>conserved hypothetical Ustilago-specific protein *</td>
</tr>
<tr>
<td>32</td>
<td>um10558 um05320</td>
<td>189722</td>
<td>191330</td>
<td>probable tubulin beta chain</td>
</tr>
<tr>
<td>33</td>
<td>um10559 um05321</td>
<td>194157</td>
<td>191683</td>
<td>conserved hypothetical protein</td>
</tr>
<tr>
<td>34</td>
<td>um05322</td>
<td>196067</td>
<td>195681</td>
<td>hypothetical protein</td>
</tr>
<tr>
<td>35</td>
<td>um10560 um05323</td>
<td>196939</td>
<td>198717</td>
<td>conserved hypothetical protein</td>
</tr>
<tr>
<td>36</td>
<td>um10561 um05324</td>
<td>200035</td>
<td>204555</td>
<td>related to VPS10 domain-containing receptor SorCS1 precursor</td>
</tr>
<tr>
<td>37</td>
<td>um05325</td>
<td>207057</td>
<td>209936</td>
<td>conserved hypothetical protein</td>
</tr>
<tr>
<td>38</td>
<td>um05326</td>
<td>211663</td>
<td>217938</td>
<td>conserved hypothetical protein</td>
</tr>
</tbody>
</table>

1 Number corresponds to predicted *U. maydis* genes in Figure 4
2 MIPS *U. maydis* Database gene ID number available at http://mips.helmholtz-muenchen.de/genre/proj/ustilago/; color indicates homology / likely family members, and corresponds to Figure 4
3 annotated function of *U. maydis* gene; the 24 predicted SSPs are indicated with an asterisk [26]